Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2025 Jun;26(3):253-265.
doi: 10.1038/s41435-025-00331-9. Epub 2025 May 13.

The role of B cell immunity in lung adenocarcinoma

Affiliations
Review

The role of B cell immunity in lung adenocarcinoma

Long Shu et al. Genes Immun. 2025 Jun.

Abstract

Lung cancer is the deadliest cancer globally. Non-small cell lung cancer (NSCLC), including adenocarcinoma, squamous cell carcinoma, and large cell carcinoma, constitutes a significant portion of cases. Adenocarcinoma, the most prevalent type, has seen a rising incidence. Immune checkpoint inhibitors (ICIs) have improved outcomes in lung adenocarcinoma (LUAD), yet response rates remain unsatisfactory. PD-1/PD-L1 inhibitors are primary ICIs for LUAD, targeting the PD-1/PD-L1 pathway between CD8+ T cells and tumor cells. However, LUAD presents a "cold tumor" phenotype with fewer CD8+ T cells and lower PD-1 expression, leading to resistance to ICIs. Thus, understanding the function of other immune cell in tumor microenvironment is crucial for developing novel immunotherapies for LUAD. B cells, which is part of the adaptive immune system, have gained attention for its role in cancer immunology. While research on B cells lags behind T cells, recent studies reveal their close correlation with prognosis and immunotherapy effectiveness in various solid tumors, including lung cancer. B cells show higher abundance, activity, and prognostic significance in LUAD than that in LUSC. This review summarizes the difference of B cell immunity between LUAD and other lung cancers, outlines the role of B cell immunity in LUAD.

PubMed Disclaimer

Conflict of interest statement

Competing interests: The authors declare no competing interests.

Similar articles

References

    1. Siegel RL, Giaquinto AN, Jemal A. Cancer statistics, 2024. CA Cancer J Clin. 2024;74:12–49. - PubMed - DOI
    1. Nicholson AG, Tsao MS, Beasley MB, Borczuk AC, Brambilla E, Cooper WA, et al. The 2021 WHO classification of lung tumors: impact of advances since 2015. J Thorac Oncol. 2022;17:362–87. - PubMed - DOI
    1. Ma W, Xue R, Zhu Z, Farrukh H, Song W, Li T, et al. Increasing cure rates of solid tumors by immune checkpoint inhibitors. Exp Hematol Oncol. 2023;12:10. - PubMed - PMC - DOI
    1. Ackermann CJ, Adderley H, Ortega-Franco A, Khan A, Reck M, Califano R. First-line immune checkpoint inhibition for advanced non-small-cell lung cancer: state of the art and future directions. Drugs. 2020;80:1783–97. - PubMed - DOI
    1. Tian Y, Zhai X, Yan W, Zhu H, Yu J. Clinical outcomes of immune checkpoint blockades and the underlying immune escape mechanisms in squamous and adenocarcinoma NSCLC. Cancer Med. 2021;10:3–14. - PubMed - DOI

Substances

LinkOut - more resources