An Interlayer Strategy for Low-Voltage Thin-Film Organic Electrochemical Transistors
- PMID: 40364613
- DOI: 10.1002/smtd.202500322
An Interlayer Strategy for Low-Voltage Thin-Film Organic Electrochemical Transistors
Abstract
Solid-state organic electrochemical transistors (SS-OECTs) are promising candidates for next-generation wearable and bioelectronic applications due to their high transconductance and low-voltage operation. However, conventional SS-OECTs rely on ion gels with high ionic liquid concentrations, which compromise mechanical robustness and scalability. This study addresses these limitations by developing thin-film OECTs (TF-OECTs) using solid electrolytes with significantly reduced ionic liquid concentrations and introducing a doped organic semiconductor film (DOSCF) as an interlayer between the gate and electrolyte. This strategy enables TF-OECTs to achieve film-like mechanical properties while maintaining high performance, including a maximum transconductance (gm) of 5.05 mS, operational voltages below 1 V, and exceptional stability over 1000 switching cycles. The devices also exhibit superior flexibility, enduring over 2000 bending cycles with minimal performance degradation. Their potential is demonstrated in ferric ion sensing, achieving an ultralow detection limit of 15 nm with a high selectivity of 0.7 mA dec-1, and in neuromorphic computing, where they emulate synaptic behaviors and achieve a 96.7% image recognition accuracy after training with artificial neural networks (ANN). These results highlight the transformative potential of TF-OECTs for integration into advanced, multifunctional electronic systems, combining high performance, mechanical robustness, and scalability.
Keywords: flexibility; ion sensors; low voltage; organic electrochemical transistors; synaptic transistors.
© 2025 Wiley‐VCH GmbH.
Similar articles
-
Gel-Based Electrolytes for Organic Electrochemical Transistors: Mechanisms, Applications, and Perspectives.Small. 2025 Mar;21(9):e2409384. doi: 10.1002/smll.202409384. Epub 2025 Feb 3. Small. 2025. PMID: 39901575 Review.
-
Ionic-Liquid Doping Enables High Transconductance, Fast Response Time, and High Ion Sensitivity in Organic Electrochemical Transistors.Adv Mater. 2019 Jan;31(2):e1805544. doi: 10.1002/adma.201805544. Epub 2018 Nov 12. Adv Mater. 2019. PMID: 30417445
-
Performance of Organic Electrochemical Transistors with Ionic Liquid Crystal Elastomers as Solid Electrolytes.ACS Appl Mater Interfaces. 2024 Oct 9;16(40):54282-54291. doi: 10.1021/acsami.4c06608. Epub 2024 Sep 25. ACS Appl Mater Interfaces. 2024. PMID: 39323228 Free PMC article.
-
Functionalized Organic Thin Film Transistors for Biosensing.Acc Chem Res. 2019 Feb 19;52(2):277-287. doi: 10.1021/acs.accounts.8b00448. Epub 2019 Jan 8. Acc Chem Res. 2019. PMID: 30620566 Review.
-
High-Performance Organic Electrochemical Transistors with Nanoscale Channel Length and Their Application to Artificial Synapse.ACS Appl Mater Interfaces. 2020 Nov 4;12(44):49915-49925. doi: 10.1021/acsami.0c15553. Epub 2020 Oct 21. ACS Appl Mater Interfaces. 2020. PMID: 33084310
References
-
- J. Rivnay, S. Inal, A. Salleo, R. M. Owens, M. Berggren, G. G. Malliaras, Nat. Rev. Mater. 2018, 3, 17086.
-
- X. Wu, S. Chen, M. Moser, A. Moudgil, S. Griggs, A. Marks, T. Li, I. McCulloch, W. L. Leong, Adv. Funct. Mater. 2023, 33, 2209354.
-
- S. Chen, A. Surendran, X. Wu, W. L. Leong, Adv. Funct. Mater. 2020, 30, 2006186.
-
- Y. Wang, Y. Liu, Trends Chem. 2023, 5, 279.
-
- D. Khodagholy, J. Rivnay, M. Sessolo, M. Gurfinkel, P. Leleux, L. H. Jimison, E. Stavrinidou, T. Herve, S. Sanaur, R. M. Owens, G. G. Malliaras, Nat. Commun. 2013, 4, 2133.
Grants and funding
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous