Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Apr 14;16(5):790-796.
doi: 10.1021/acsmedchemlett.4c00637. eCollection 2025 May 8.

Design, Synthesis, and Biological Evaluation of Peptidomimetic Tetrahydropyrrole Spirodihydroindolones as SARS-CoV-2 3CL Protease Inhibitors

Affiliations

Design, Synthesis, and Biological Evaluation of Peptidomimetic Tetrahydropyrrole Spirodihydroindolones as SARS-CoV-2 3CL Protease Inhibitors

Liuyan Hu et al. ACS Med Chem Lett. .

Abstract

The 3CL protease (3CLpro) of SARS-CoV-2 is a key enzyme that plays an essential role in mediating viral replication and transcription. In this study, we synthesized and evaluated a series of peptidomimetic compounds containing a tetrahydropyrrole spirodihydroindolone moiety. Among the target compounds, 13c and 17d exhibited obvious 3CLpro inhibitory activities with IC50 = 3.71 and 6.21 nM, respectively. In metabolic stability testing of liver microsomes, compound 13c showed improved stability in human liver microsomes. In addition, 13c displayed significant anti-SARS-CoV-2 activity and high safety in Vero E6 cells (EC50 = 19.26 nM, SI > 400). Further investigations indicated that 13c showed potent activity against HCoV-OC43 and favorable safety in Huh7 cells (EC50 = 61 nM, SI > 100). These findings suggest that compound 13c is a promising lead compound in the development of novel 3CLpro inhibitors.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing financial interest.

References

    1. Liu W. H.; Huang Z. H.; Xiao J.; Wu Y. T.; Xia N. S.; Yuan Q. Evolution of the SARS-CoV-2 Omicron Variants: Genetic Impact on Viral Fitness. Viruses 2024, 16 (2), 184.10.3390/v16020184. - DOI - PMC - PubMed
    1. Ahmed N. J.; Amin Z. A.; Kheder R. K.; Pirot R. Q.; Mutalib G. A.; Jabbar S. N. Immuno-inflammatory and organ dysfunction markers in severe COVID-19 patients. Cytokine 2024, 182, 156715.10.1016/j.cyto.2024.156715. - DOI - PubMed
    1. Halfmann P. J.; Minor N. R.; Haddock L. A.; Maddox R.; Moreno G. K.; Braun K. M.; Baker D. A.; Riemersa K. K.; Prasad A.; Alman K. J.; Lambert M. C.; Florek K.; Bateman A.; Westergaard R.; Safdar N.; Andes D. R.; Kawaoka Y.; Fida M.; Yao J. D.; Friedrich T. C.; O’Connor D. H. Evolution of a globally unique SARS-CoV-2 Spike E484T monoclonal antibody escape mutation in a persistently infected, immunocompromised individual. Virus Evol. 2023, 9 (2), 1–9. 10.1093/ve/veac104. - DOI - PMC - PubMed
    1. Iketani S.; Mohri H.; Culbertson B.; Hong S. J.; Duan Y. K.; Luck M.; Annavajhala M. K.; Guo Y. C.; Sheng Z. Z.; Uhlemann A. C.; Goff S.; Sabo Y.; Yang H.; Chavez A.; Ho a.D. Multiple pathways for SARS-CoV-2 resistance to Nirmatrelvir. Nature 2023, 613 (7944), 558–564. 10.1038/s41586-022-05514-2. - DOI - PMC - PubMed
    1. Jochmans D.; Liu C.; Donckers K.; Stoycheva A.; Boland S.; Stevens S. K.; De Vita C.; Vanmechelen B.; Maes P.; Trüeb B.; Ebert N.; Thiel V.; De Jonghe S.; Vangeel L.; Bardiot D.; Jekle A.; Blatt L. M.; Beigelman L.; Symons J. A.; Raboisson P.; Chaltin P.; Marchand A.; Neyts J.; Deval J.; Vandyck K. The Substitutions L50F, E166A, and L167F in SARS-CoV-2 3CLpro Are Selected by a Protease Inhibitor In Vitro and Confer Resistance to Nirmatrelvir. mBio 2023, 14 (1), e02815-2210.1128/mbio.02815-22. - DOI - PMC - PubMed

LinkOut - more resources