Incomplete paralog compensation generates selective dependency on TRA2A in cancer
- PMID: 40367120
- PMCID: PMC12077678
- DOI: 10.1371/journal.pgen.1011685
Incomplete paralog compensation generates selective dependency on TRA2A in cancer
Abstract
Paralogs often exhibit functional redundancy, allowing them to effectively compensate for each other's loss. However, this buffering mechanism is frequently disrupted in cancer, exposing unique paralog-specific vulnerabilities. Here, we identify a selective dependency on the splicing factor TRA2A. We find that TRA2A and its paralog TRA2B are synthetic lethal partners that function as widespread and largely redundant activators of both alternative and constitutive splicing. While loss of TRA2A alone is typically neutral due to compensation by TRA2B, we discover that a subset of cancer cell lines are highly TRA2A-dependent. Upon TRA2A depletion, these cell lines exhibit a lack of paralog buffering specifically on shared splicing targets, leading to defects in mitosis and cell death. Notably, TRA2B overexpression rescues both the aberrant splicing and lethality associated with TRA2A loss, indicating that paralog compensation is dosage-sensitive. Together, these findings reveal a complex dosage-dependent relationship between paralogous splicing factors, and highlight how dysfunctional paralog buffering can create a selective dependency in cancer.
Copyright: © 2025 Lee et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Conflict of interest statement
The authors have declared that no competing interests exist.
Figures






Similar articles
-
Prescription of Controlled Substances: Benefits and Risks.2025 Jul 6. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan–. 2025 Jul 6. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan–. PMID: 30726003 Free Books & Documents.
-
Pharmacological CLK inhibition disrupts SR protein function and RNA splicing blocking cell growth and migration in TNBC.Breast Cancer Res. 2025 Jul 29;27(1):140. doi: 10.1186/s13058-025-02091-w. Breast Cancer Res. 2025. PMID: 40731028 Free PMC article.
-
Elbow Fractures Overview.2025 Jul 7. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan–. 2025 Jul 7. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan–. PMID: 28723005 Free Books & Documents.
-
Alternative Splicing in Tumorigenesis and Cancer Therapy.Biomolecules. 2025 May 29;15(6):789. doi: 10.3390/biom15060789. Biomolecules. 2025. PMID: 40563429 Free PMC article. Review.
-
Automated devices for identifying peripheral arterial disease in people with leg ulceration: an evidence synthesis and cost-effectiveness analysis.Health Technol Assess. 2024 Aug;28(37):1-158. doi: 10.3310/TWCG3912. Health Technol Assess. 2024. PMID: 39186036 Free PMC article.
References
-
- Ohno S. Evolution by gene duplication [Internet]. Berlin, Heidelberg: Springer Berlin Heidelberg; 1970. [cited 2025 Feb 11]. Available from: http://link.springer.com/10.1007/978-3-642-86659-3 - DOI
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
Miscellaneous