Synphilin-1 regulates mechanotransduction in rigidity sensing through interaction with zyxin
- PMID: 40369541
- PMCID: PMC12076907
- DOI: 10.1186/s12951-025-03429-4
Synphilin-1 regulates mechanotransduction in rigidity sensing through interaction with zyxin
Abstract
Background: Synphilin-1 has been studied extensively in the context of Parkinson's disease pathology. However, the biophysical functions of synphilin-1 remain unexplored. To investigate its novel functionalities herein, cellular traction force and rigidity sensing ability are analyzed based on synphilin-1 overexpression using elastomeric pillar arrays and substrates of varying stiffness. Molecular changes are analyzed using RNA sequencing-based transcriptomic and liquid chromatography-tandem mass spectrometry-based proteomic analyses.
Results: Synphilin-1 overexpression reduces cell area, with a decline of local contraction on elastomeric pillar arrays. Cells overexpressing synphilin-1 exhibit an impaired ability to respond to substrate rigidity; however, synphilin-1 knockdown restores rigidity sensing abilities. Integrated omics analysis and in silico prediction corroborate the phenotypic alterations induced by synphilin-1 overexpression at a biophysical level. Zyxin emerges as a novel synphilin-1 binding protein, and synphilin-1 overexpression reduces the nuclear translocation of yes-associated protein.
Conclusion: These findings provide novel insights into the biophysical functions of synphilin-1, suggesting a potential protective role to the altered extracellular matrix, which may be relevant to neurodegenerative conditions such as Parkinson's disease.
Keywords: Mechanobiology; Multi-omics; Rigidity sensing; Synphilin-1; Zyxin.
© 2025. The Author(s).
Conflict of interest statement
Declarations. Ethics approval and consent to participate: Not applicable. Consent for publication: Not applicable. Competing interests: The authors declare no competing interests.
Figures
References
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Miscellaneous
