Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Apr 11;10(5):2268-2276.
doi: 10.1021/acsenergylett.5c00124. eCollection 2025 May 9.

Improving the Stability of Colloidal CsPbBr3 Nanocrystals with an Alkylphosphonium Bromide as Surface Ligand Pair

Affiliations

Improving the Stability of Colloidal CsPbBr3 Nanocrystals with an Alkylphosphonium Bromide as Surface Ligand Pair

Meenakshi Pegu et al. ACS Energy Lett. .

Abstract

In this study, we synthesized a phosphonium-based ligand, trimethyl(tetradecyl)phosphonium bromide (TTP-Br), and employed it in the postsynthesis surface treatment of Cs-oleate-capped CsPbBr3 nanocrystals (NCs). The photoluminescence quantum yield (PLQY) of the NCs increased from ∼60% to more than 90% as a consequence of replacing Cs-oleate with TTP-Br ligand pairs. Density functional theory calculations revealed that TTP+ ions bind to the NC surface by occupying Cs+ surface sites and orienting one of their P-CH3 bonds perpendicular to the surface, akin to quaternary ammonium passivation. Importantly, TTP-Br-capped NCs exhibited higher stability in air compared to didodecyldimethylammonium bromide-capped CsPbBr3 NCs (which are considered a benchmark system), retaining ∼90% of their PLQY after 6 weeks of air exposure. Light-emitting diodes fabricated with TTP-Br-capped NCs achieved a maximum external quantum efficiency of 17.2%, demonstrating the potential of phosphonium-based molecules as surface ligands for CsPbBr3 NCs in optoelectronic applications.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing financial interest.

Figures

Scheme 1
Scheme 1. Sketch of the Post-Synthesis Ligand Exchange Process Involving Treatment of Cs-Oleate-Capped CsPbBr3 NCs with TTP-Br
Figure 1
Figure 1
(a) TEM micrograph of TTP-Br-capped CsPbBr3 NCs. (b) X-ray diffraction pattern of TTP-Br-capped CsPbBr3 NCs and reference CsPbBr3 orthorhombic bulk reflections (ICSD Number 243735). (c) XPS P2p spectra of TTP-Br- and Cs-Oleate-capped CsPbBr3 NCs. (d) FTIR spectra of the TTP-Br ligand and TTP-Br- and Cs-oleate-capped CsPbBr3 NCs. (e) 1H NMR spectra at 298 K of Cs-oleate- and TTP-Br-capped CsPbBr3 NCs (see the Supporting Information for more details). (f) 2D NOESY spectrum of TTP-Br-capped CsPbBr3 NCs at 313 K (see Supporting Information for the detailed spectrum).
Figure 2
Figure 2
(a) UV–visible absorption and PL spectra of Cs-oleate-, DDA-Br-, and TTP-Br-capped CsPbBr3 NCs. (b) PL decay profile of Cs-oleate-, DDA-Br-, and TTP-Br-capped CsPbBr3 NCs. (c) Binding configuration of TTP-Br- ligands sitting in the A-site of the CsPbBr3 NCs’ surface. (d) PLQY stability of Cs-oleate-, DDA-Br-, and TTP-Br-capped CsPbBr3 NCs over time at ambient storage conditions.
Figure 3
Figure 3
(a) Double HTL LED device configuration based on TTP-Br-capped CsPbBr3 NCs. (b) Band-energy alignment of TTP-Br-capped CsPbBr3 NCs with charge injection layers. (c) PL spectrum of TTP-Br-capped CsPbBr3 NC film and EL spectra of the double HTL LED at different applied voltages. (d) Current density and luminance versus driving voltage curves of the double HTL TTP-Br-capped CsPbBr3 NC-based champion LED device. (e) EQE versus current density of the double HTL LEDs champion devices based on TTP-Br-capped and DDA-Br-capped CsPbBr3 NCs. (f) Stability of the EL intensity under operation conditions with the initial luminance of 500 cd/m2, while the inset shows the intensity of light plotted over time with an applied bias of 7 V.

Similar articles

References

    1. Shamsi J.; Urban A. S.; Imran M.; De Trizio L.; Manna L. Metal halide perovskite nanocrystals: synthesis, post-synthesis modifications, and their optical properties. Chem. Rev. 2019, 119 (5), 3296–3348. 10.1021/acs.chemrev.8b00644. - DOI - PMC - PubMed
    1. Bodnarchuk M. I.; Boehme S. C.; Ten Brinck S.; Bernasconi C.; Shynkarenko Y.; Krieg F.; Widmer R.; Aeschlimann B.; Günther D.; Kovalenko M. V.; Infante I. Rationalizing and controlling the surface structure and electronic passivation of cesium lead halide nanocrystals. ACS Energy Letters 2019, 4 (1), 63–74. 10.1021/acsenergylett.8b01669. - DOI - PMC - PubMed
    1. Byranvand M. M.; Otero-Martínez C.; Ye J.; Zuo W.; Manna L.; Saliba M.; Hoye R. L.; Polavarapu L. Recent progress in mixed a-site cation halide perovskite thin-films and nanocrystals for solar cells and light-emitting diodes. Advanced Optical Materials 2022, 10 (14), 2200423.10.1002/adom.202200423. - DOI
    1. Protesescu L.; Yakunin S.; Bodnarchuk M. I.; Krieg F.; Caputo R.; Hendon C. H.; Yang R. X.; Walsh A.; Kovalenko M. V. Nanocrystals of cesium lead halide perovskites (CsPbX3, X= Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 2015, 15 (6), 3692–3696. 10.1021/nl5048779. - DOI - PMC - PubMed
    1. Liu D.; Guo Y.; Que M.; Yin X.; Liu J.; Xie H.; Zhang C.; Que W. Metal halide perovskite nanocrystals: application in high-performance photodetectors. Materials Advances 2021, 2 (3), 856–879. 10.1039/D0MA00796J. - DOI

LinkOut - more resources