Nanotechnology-Based Modern Biosensors for the Detection of SARS-CoV-2 Virus
- PMID: 40371028
- PMCID: PMC12069202
- DOI: 10.1007/s12088-024-01404-5
Nanotechnology-Based Modern Biosensors for the Detection of SARS-CoV-2 Virus
Abstract
The emergence of the COVID-19 pandemic has pointed out the urgent need for rapid and accurate diagnostic tools to detect the SARS-CoV-2 virus. Nanotechnology-based biosensors have emerged as a promising solution due to their high sensitivity, specificity, and speed in detecting biological molecules. This article focuses on the advancements in using nanotechnology for the development of modern biosensors tailored for the detection of the SARS-CoV-2 virus. Various nanomaterials, such as quantum dots, metallic nanoparticles, and nanowires, have been harnessed to enhance the performance of biosensors, offering improved detection limits and specificity. Besides this, innovative detection platforms, such as field-effect transistors, surface plasmon resonance, and electrochemical sensors, have revolutionized the landscape of SARS-CoV-2 diagnostics. These nanotechnology-based biosensors demonstrate the potential for point-of-care testing, enabling rapid and on-site detection with minimal sample preparation. The scalability, cost-effectiveness, and portability of these biosensors make them suitable for mass screening efforts in various healthcare settings, including hospitals, clinics, and community centers. The development of reliable biosensors for SARS-CoV-2 detection aligns with global efforts to curb the spread of the virus through early identification and containment strategies.
Keywords: Biosensor; COVID-19; Detection; Nanomaterials; Nanotechnology; SARS-CoV-2.
© Association of Microbiologists of India 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Similar articles
-
Rapid, point-of-care antigen tests for diagnosis of SARS-CoV-2 infection.Cochrane Database Syst Rev. 2022 Jul 22;7(7):CD013705. doi: 10.1002/14651858.CD013705.pub3. Cochrane Database Syst Rev. 2022. PMID: 35866452 Free PMC article.
-
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.Cochrane Database Syst Rev. 2022 May 20;5(5):CD013665. doi: 10.1002/14651858.CD013665.pub3. Cochrane Database Syst Rev. 2022. PMID: 35593186 Free PMC article.
-
Measures implemented in the school setting to contain the COVID-19 pandemic.Cochrane Database Syst Rev. 2022 Jan 17;1(1):CD015029. doi: 10.1002/14651858.CD015029. Cochrane Database Syst Rev. 2022. Update in: Cochrane Database Syst Rev. 2024 May 2;5:CD015029. doi: 10.1002/14651858.CD015029.pub2. PMID: 35037252 Free PMC article. Updated.
-
Antibody tests for identification of current and past infection with SARS-CoV-2.Cochrane Database Syst Rev. 2022 Nov 17;11(11):CD013652. doi: 10.1002/14651858.CD013652.pub2. Cochrane Database Syst Rev. 2022. PMID: 36394900 Free PMC article.
-
Nanomaterial-Based Biosensors for the Detection of COVID-19.Indian J Microbiol. 2025 Mar;65(1):120-136. doi: 10.1007/s12088-024-01336-0. Epub 2024 Jun 23. Indian J Microbiol. 2025. PMID: 40371045
References
-
- Udugama B, Kadhiresan P, Kozlowski HN, Malekjahani A, Osborne M, Li VYC, Chen H, Mubareka S, Gubbay JB, Chan WCW (2020) Diagnosing COVID-19: the disease and tools for detection. ACS Nano 14:3822–3835. 10.1021/acsnano.0c02624 - PubMed
-
- Harvey WT, Carabelli AM, Jackson B, Gupta RK, Thomson EC, Harrison EM, Ludden C, Reeve R, Rambaut A (2021) COVID-19 Genomics UK (COG-UK) Consortium; Peacock SJ, Robertson DLl: SARS-CoV-2 variants, spike mutations and immune escape. Nat Rev Microbiol 19:409–424. 10.1038/s41579-021-00573-0 - PMC - PubMed
-
- Twohig KA, Nyberg T, Zaidi A, Thelwall S, Sinnathamby MA, Aliabadi S, Seaman SR, Harris RJ, Hope R, Lopez-Bernal J, Gallagher E, Charlett A, De Angelis D, Presanis AM, Dabrera G (2022) COVID-19 Genomics UK (COG-UK) consortium. Hospital admission and emergency care attendance risk for SARS-CoV-2 delta (B.1.617.2) compared with alpha (B.1.1.7) variants of concern: a cohort study. Lancet Infect Dis. 22:35–42. 10.1016/S1473-3099(21)00475-8. - PMC - PubMed
Publication types
LinkOut - more resources
Miscellaneous