Next-Gen Nano Biosensor Technologies to Monitor Carbapenem Resistance for Personalized Medicine
- PMID: 40371034
- PMCID: PMC12069791
- DOI: 10.1007/s12088-024-01337-z
Next-Gen Nano Biosensor Technologies to Monitor Carbapenem Resistance for Personalized Medicine
Abstract
Carbapenem resistance represents a pressing public health concern, posing significant challenges due to limited treatment options and escalating mortality rates. In India, the prevalence of carbapenem resistance among Enterobacteriaceae ranges between 18 to 31%, causing severe infections such as bloodstream infections, pneumonia, urinary tract infections, and intra-abdominal infections. Accurate and timely diagnosis, particularly for Enterobacteriaceae producing carbapenemase, is crucial for effective clinical prophylaxis of critical care patients as they are considered as a last resort of therapy. Various genotypic and non-genotypic detection methods have been developed over the past decade, their limitations in terms of sensitivity and specificity have led the exploration of innovative technologies. Advanced opportunities for carbapenem resistance detection using microfluidic-based biosensors have miniaturized various biomedical devices. This enables the use of less sample and reagents, cheap pricing, automation, screening, and improved detection. Despite ongoing research and development, the adoption of these biosensors in healthcare settings is limited due to the lack of awareness and understanding of their efficiency. Therefore, this review primarily focuses on the advantages and limitations of all biosensor-based devices over existing methods for the detection of carbapenem resistance in gram negative bacilli. These biosensors represent substantial advancements in combating carbapenem resistance, providing promise for more reliable and accurate diagnostic techniques that may eventually improve patient care and infection control.
Keywords: Biosensors; Carbapenem resistance; Gram negative bacilli; Microfluidics; Personalized medicine.
© Association of Microbiologists of India 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Conflict of interest statement
Conflict of interestThe authors declare no conflict of interest.
References
-
- Alhazmi W, Al-Jabri A, Al-Zahrani I (2022) The molecular characterization of nosocomial carbapenem-resistant Klebsiella pneumoniae Co-Harboring blaNDM and blaOXA-48 in Jeddah. Microbiol Res (Pavia) 13:753–764. 10.3390/microbiolres13040054
LinkOut - more resources
Miscellaneous