An NGS-based approach for precise and footprint-free CRISPR-based gene editing in human stem cells
- PMID: 40373837
- DOI: 10.1016/j.ymeth.2025.05.004
An NGS-based approach for precise and footprint-free CRISPR-based gene editing in human stem cells
Abstract
Precise gene editing with conventional CRISPR/Cas9 is often constrained by low knock-in (KI) efficiencies (≈ 2-20 %) in human induced pluripotent stem cells (hiPSCs) and human embryonic stem cells (hESCs). This limitation typically necessitates labour-intensive manual isolation and genotyping of hundreds of colonies to identify correctly edited cells. Fluorescence- or antibiotic-based enrichment methods facilitate the identification process but can compromise cell viability and genomic integrity. Here, we present a footprint-free editing strategy that combines low-density seeding with next-generation sequencing (NGS) to rapidly identify cell populations containing precisely modified clones. By optimising the transfection workflow and adhering to CRISPR/Cas9 KI design principles, we achieved high average editing efficiencies of 64 % in hiPSCs (introducing a Brugada syndrome-associated variant) and 51 % in hESCs (introducing a neurodevelopmental disorder (NDD)-associated variant). Furthermore, under suboptimal CRISPR design conditions, this approach successfully identified hESC clones carrying a second NDD-associated variant, despite average KI efficiencies below 1 %. Importantly, genomic integrity was preserved throughout subcloning rounds, as confirmed by Sanger sequencing and single nucleotide polymorphism (SNP) array analysis. Hence, this NGS-based enrichment strategy reliably identifies desired KI clones under both optimal and challenging conditions, reducing the need for extensive colony screening and offering an effective alternative to fluorescence- and antibiotic-based selection methods.
Keywords: Brugada syndrome; CRISPR/Cas9; Knock-in; NGS; Neurodevelopmental disorders; hESC; hiPSC.
Copyright © 2025 The Authors. Published by Elsevier Inc. All rights reserved.
Conflict of interest statement
Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
MeSH terms
LinkOut - more resources
Full Text Sources