Discovering nanoparticle corona ligands for liver macrophage capture
- PMID: 40374797
- DOI: 10.1038/s41565-025-01903-6
Discovering nanoparticle corona ligands for liver macrophage capture
Abstract
Liver macrophages capture circulating nanoparticles and reduce their delivery to target organs. Serum proteins adsorb to the nanoparticle surface after administration. However, the adsorbed serum proteins and their cognate cell receptors for removing nanoparticles from the bloodstream have not been linked. Here we use a multi-omics strategy to identify the adsorbed serum proteins binding to specific liver macrophage receptors. We discovered six absorbed serum proteins that bind to two liver macrophage receptors. Nanoparticle physicochemical properties can affect the degree of the six serum proteins adsorbing to the surface, the probability of binding to cell receptors and whether the liver removes the nanoparticle from circulation. Identifying the six adsorbed proteins allowed us to engineer decoy nanoparticles that prime the liver to take up fewer therapeutic nanoparticles, enabling more nanoparticles for targeting extrahepatic tissues. Elucidating the molecular interactions governing the nanoparticle journey in vivo will enable us to control nanoparticle delivery to diseased tissues.
© 2025. The Author(s), under exclusive licence to Springer Nature Limited.
Conflict of interest statement
Competing interests: W.C.W.C. consults for Metis Therapeutics, Merck, Moderna, Foresight Ventures, Luna Nanotech and Cystic Fibrosis Foundation. The other authors declare no competing interests.
Similar articles
-
The Binding Affinities of Serum Proteins to Nanoparticles.J Am Chem Soc. 2025 Jun 18;147(24):20475-20492. doi: 10.1021/jacs.5c02576. Epub 2025 Jun 9. J Am Chem Soc. 2025. PMID: 40489685
-
Plasma protein corona on silica nanoparticles enhances exocytosis.Biomater Sci. 2025 Jun 25;13(13):3532-3543. doi: 10.1039/d4bm01189a. Biomater Sci. 2025. PMID: 40433828
-
Surface Charge Overrides Protein Corona Formation in Determining the Cytotoxicity, Cellular Uptake, and Biodistribution of Silver Nanoparticles.ACS Appl Bio Mater. 2025 Jun 16;8(6):5032-5043. doi: 10.1021/acsabm.5c00392. Epub 2025 May 21. ACS Appl Bio Mater. 2025. PMID: 40397405 Free PMC article.
-
Corona Dynamics of Nanoparticles and Their Functional Design Space in Molecular Sensing.ACS Nano. 2025 Jul 15;19(27):24653-24668. doi: 10.1021/acsnano.5c07202. Epub 2025 Jul 6. ACS Nano. 2025. PMID: 40618381 Review.
-
Artificial protein coronas: directing nanoparticles to targets.Trends Pharmacol Sci. 2024 Jul;45(7):602-613. doi: 10.1016/j.tips.2024.05.003. Epub 2024 May 28. Trends Pharmacol Sci. 2024. PMID: 38811308 Review.
Cited by
-
Nanomedicines for the treatment of genitourinary neoplasms.Mater Today Bio. 2025 Aug 3;34:102165. doi: 10.1016/j.mtbio.2025.102165. eCollection 2025 Oct. Mater Today Bio. 2025. PMID: 40799991 Free PMC article. Review.
References
-
- Zhang, Y.-N., Poon, W., Tavares, A. J., McGilvray, I. D. & Chan, W. C. W. Nanoparticle–liver interactions: cellular uptake and hepatobiliary elimination. J. Control. Release 240, 332–348 (2016). - PubMed
-
- Ngo, W. et al. Why nanoparticles prefer liver macrophage cell uptake in vivo. Adv. Drug Deliv. Rev. 185, 114238 (2022). - PubMed
-
- Nagayama, S. et al. Fetuin mediates hepatic uptake of negatively charged nanoparticles via scavenger receptor. Int. J. Pharm. 329, 192–198 (2007). - PubMed
-
- Binnemars-Postma, K. A., Ten Hoopen, H. W., Storm, G. & Prakash, J. Differential uptake of nanoparticles by human M1 and M2 polarized macrophages: protein corona as a critical determinant. Nanomedicine 11, 2889–2902 (2016). - PubMed
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources