New therapeutic strategies for malaria
- PMID: 40376415
- PMCID: PMC12075036
- DOI: 10.1007/s12551-025-01296-9
New therapeutic strategies for malaria
Abstract
Malaria is a life-threatening parasitic disease and remains a significant global health problem, associated with high morbidity and mortality. Malaria cases are widely spread, but the highest incidence occurs in tropical and subtropical areas, especially in developing countries. Despite all efforts to control the disease, the number of cases increased by 5 million from 2021 to 2022. The mechanisms of malaria pathogenesis are still not fully understood. This, combined with the parasite's recurrent ability to develop resistance to standard treatments, hinders effective disease management and control. Therefore, a deep understanding of parasite biology, along with the various aspects of host-parasite interactions, is essential for malaria elimination. Extracellular vesicles (EVs) are membrane-enclosed vesicles which are secreted by a variety of cells. These tiny structures have emerged as a key component in the mechanisms of pathogenesis of different parasitic diseases, promoting cell-to-cell communication, even in distance. In this review, we explore the latest advancements in EV research in the malaria field, focusing on their role in pathophysiology, as well as their potential as diagnostic tools, alternative therapeutic strategies, and vaccine development. We conclude by highlighting key elements in EV research that could provide insights into the translational application of EVs.
Keywords: Cell–cell communication; Disease pathogenesis; Extracellular vesicles; Host-parasite interaction; Malaria; Plasmodium.
© International Union for Pure and Applied Biophysics (IUPAB) and Springer-Verlag GmbH Germany, part of Springer Nature 2025. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Conflict of interest statement
Competing interestsThe authors declare no competing interests.
References
-
- Ashley EA, Pyae Phyo A, Woodrow CJ (2018) Malaria. Lancet 391:1608–1621. 10.1016/S0140-6736(18)30324-6 - PubMed
Publication types
LinkOut - more resources
Full Text Sources