Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2025 Jul 12:770:151978.
doi: 10.1016/j.bbrc.2025.151978. Epub 2025 May 8.

Association between sleep disturbance and metabolic dysfunctions in adipose tissue: Insights into melatonin's role

Affiliations
Review

Association between sleep disturbance and metabolic dysfunctions in adipose tissue: Insights into melatonin's role

Mishthi Ratwani et al. Biochem Biophys Res Commun. .

Abstract

The increased prevalence of sleep disturbances in modern society is frequently linked to various metabolic disorders, including insulin resistance, obesity, hypertension, fatty liver disease, and cardiometabolic complications. Melatonin, a pineal gland-secreted neurohormone, plays a pivotal role in maintaining the circadian rhythm. It is involved in regulating adipose tissue development, lipid accumulation, browning of white adipose tissue, and activation of brown adipose tissue. The adipose tissue is a dynamic endocrine organ that secretes hormones and cytokines. Recent research has highlighted the significant role of melatonin in the modulation of lipid metabolism, adipogenesis, and thermogenesis in adipose tissues. Circadian rhythms are important in synchronizing metabolic functions with environmental cues, such as light and dark, feeding-fasting states, etc. Irregular sleep patterns, shift work, and exposure to artificial light at night disrupt these rhythms, affecting circadian regulation and compromising metabolic health. Melatonin imbalance due to sleep disturbances results in metabolic dysfunction, increased fat storage, and adipose tissue inflammation. As circadian rhythm and melatonin are both related, a change in circadian rhythm affects the physiology of adipose tissues thereby precipitating metabolic complications through melatonin signaling. This study attempted to understand the mechanisms by which melatonin influences adipose tissue activity, highlighting the role of circadian rhythms in this process. This will enable the development of melatonin-based therapies to mitigate the adverse effects of chronobiological disturbances on the physiology of adipose tissue. Understanding these interactions will provide novel insights for combating obesity and related metabolic conditions.

Keywords: Adipose tissues; Circadian rhythm; Melatonin; Metabolic homeostasis; Sleep disturbances.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work in this article.

Similar articles

LinkOut - more resources