Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2025 Jul:123:110492.
doi: 10.1016/j.clinimag.2025.110492. Epub 2025 May 12.

A review of explainable AI techniques and their evaluation in mammography for breast cancer screening

Affiliations
Free article
Review

A review of explainable AI techniques and their evaluation in mammography for breast cancer screening

Noora Shifa et al. Clin Imaging. 2025 Jul.
Free article

Abstract

Explainable AI (XAI) methods are gaining prominence in medical imaging, addressing the critical need for transparency and trust in AI-driven diagnostic tools. Mammography, as the cornerstone of early breast cancer detection, holds immense potential for improving outcomes when integrated with AI solutions. However, widespread adoption of AI in clinical settings depends on explainability, which enhances clinicians' confidence in these tools. By exploring various XAI techniques and evaluating their strengths and weaknesses, researchers can significantly advance precision medicine. This review synthesizes existing research on XAI in medical imaging, focusing on mammography, a domain often overlooked in XAI studies. It provides a comparative analysis of XAI techniques employed in mammography, assessing their diagnostic efficacy and identifying research gaps, such as the lack of specialized evaluation frameworks. Additionally, the review examines evaluation methods for XAI in medical imaging and proposes modifications tailored to mammography diagnostics. Insights from XAI advancements in other fields are also explored for their potential to enhance interpretability and clinical relevance in breast cancer detection. The study concludes by highlighting critical research gaps and proposing directions for developing reliable, effective AI models that integrate XAI to transform breast cancer diagnostics.

Keywords: Breast cancer diagnostics; Explainable AI (XAI); Mammography; Medical imaging; XAI evaluation techniques.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Similar articles

Cited by

LinkOut - more resources