Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Mar 18;36(3):738-746.
doi: 10.13287/j.1001-9332.202503.006.

C:N:P stoichiometry and homeostasis in leaf, fine root, and soil of Schima superba under different stand ages

Affiliations

C:N:P stoichiometry and homeostasis in leaf, fine root, and soil of Schima superba under different stand ages

Shu-Shu Yao et al. Ying Yong Sheng Tai Xue Bao. .

Abstract

To understand nutrient characteristics and stabilization mechanisms of Schima superba plantations with different stand ages, we took stands with five age classes (8, 13, 27, 36, and 54 a) in Youxi County, Fujian Province as the research objects, to explore the variations of carbon (C), nitrogen (N), and phosphorus (P) and their stoichiometric relationships in leaf, fine root, and soil. We further ananlyzed the coupling and homeostasis characteristics between the two components of leaf and fine root of S. superba and soil. The results showed that the C, N, and P contents in leaf and fine root showed a general trend of decreasing and then increasing with the increases of stand age. The minimum values of N (10.38 and 3.45 g·kg-1) and P contents (0.44 and 0.21 g·kg-1) of leaf and fine root appeared at the stand with age of 13 a. The C:N and C:P of those two components increased and then decreased with increasing stand age, and both of them reached their maximum values at 13 a. With the increase of stand age, soil C, N, and P contents of woodland showed a pattern of decreasing-increasing-decreasing. All of them were the lowest at 13 a, with 34.27, 1.82, and 0.11 g·kg-1, respectively; while the maximum values of soil C:N, C:P, and N:P appeared at 13 a, with 19.2, 315.8, and 17.0, respectively. The N and P contents and their stoichiometric ratios of leaf and fine root had significant correlations with soil P content and but not with soil C and N contents. Steady-state model regressions of leaf and fine root C, N, and N:P were all non-significant with absolute stability; and N, P and their stoichiometric ratio of leaf were smaller than those of fine root, but P and C:P of leaf and fine root were more sensitive to change in soil P content. In summary, 13-a was the fast-growing period of S. superba. Soil P content significantly affected leaf and fine root N and P content of S. superba, with the leaf being more sensitive to the variations of soil P content. It was recommended that P fertilizer should be added at the appropriate time to improve soil fertility and focus on the changing of foliar N and P contents.

为了解不同林龄木荷人工林生态系统的养分特征及稳定机制,本研究以福建省尤溪县8、13、27、36和54年生5个年龄木荷人工纯林为对象,探讨其叶片-细根-土壤碳(C)、氮(N)、磷(P)及化学计量变化特征,分析木荷叶片和细根两构件与土壤的耦合关系和稳态性特征。结果表明: 随着林龄增加,木荷叶片和细根C、N、P含量总体呈先降后升的变化趋势,叶片和细根的N、P含量最小值均出现在13年生,N含量分别为10.38和3.45 g·kg-1,P含量为0.44和0.21 g·kg-1。两构件C:N、C:P随林龄增加呈先增后减变化,均在13年生达到最大值。随着林龄的增加,林地土壤 C、N和P含量均呈下降-上升-下降的变化特征,且均以13年生为最低,分别为34.27、1.82和0.11 g·kg-1;土壤C:N、C:P和N:P最大值均出现在13年生,分别为19.2、315.8和17.0。木荷叶片和细根的N、P含量及其计量比与土壤P含量有显著的相关关系,与土壤C、N含量的相关性不显著。叶片与细根C、N及N:P的稳态性模型回归结果均不显著,具有绝对稳态,且叶片N、P及其计量比的稳态性均小于细根,但叶片和细根P及C:P对土壤P含量变化较为敏感。综上,13年为木荷的速生期;在木荷生长过程中,土壤P含量显著影响木荷叶片与细根N、P含量,叶片对土壤中P含量变化更敏感,建议适时添加P肥以改善土壤质量,并重点关注叶片N、P含量的变化状况。.

Keywords: Schima superba; homoeostasis; stand age; stoichiometric characteristics.

PubMed Disclaimer

Similar articles