Structure and Mechanism of Aminoacyl-tRNA-Protein L/F- and R-transferases
- PMID: 40381981
- PMCID: PMC12245572
- DOI: 10.1016/j.jmb.2025.169210
Structure and Mechanism of Aminoacyl-tRNA-Protein L/F- and R-transferases
Abstract
The aminoacyl-tRNA-protein transferases (also known as aa-transferases) are a class of enzymes that utilize a highly conserved GCN5-related N-acetyltransferase (GNAT) fold to catalyze the post-translational transfer of amino acids from an aminoacylated transfer RNA (tRNA) to an acceptor protein. The two most important subclasses of aa-transferases are the prokaryotic L/F-transferases and the eukaryotic R-transferases (ATE1s). Both subclasses were initially discovered as early as the 1960s, and both share an overlapping function linked to protein degradation: L/F-transferases are known to modify proteins that are ultimately targeted for degradation via the Clp proteolytic pathway, while R-transferases (ATE1s) are known to modify proteins that may be targeted for degradation by the ubiquitin proteasome system (UPS), although many non-degradative fates may also occur. While L/F-transferases have been minimally explored at the cellular level, the R-transferases (ATE1s) have had extensive studies linking them to critical cellular functions. Despite over a half a century passing since their discoveries, X-ray crystallographic and cryo-EM studies have only recently begun to shed light onto the mechanism of these enzymes. This review underscores the functional importance of L/F- and R-transferases (ATE1s) and highlights the recent structural developments in this field with a particular emphasis on the eukaryotic R-transferases (ATE1s). Additionally, this review draws on current structural information to synopsize proposed catalytic and regulatory mechanisms for these enzymes. Finally, this review highlights important structural and mechanistic knowledge gaps in aa-transferase function that should be addressed in order to target these important enzymes for future therapeutic developments.
Keywords: Clp pathway; N-degron pathway; aminoacyl-tRNA-protein transferase; arginylation; post-translational modification.
Copyright © 2025 Elsevier Ltd. All rights reserved.
Conflict of interest statement
Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Similar articles
-
The Black Book of Psychotropic Dosing and Monitoring.Psychopharmacol Bull. 2024 Jul 8;54(3):8-59. Psychopharmacol Bull. 2024. PMID: 38993656 Free PMC article. Review.
-
Short-Term Memory Impairment.2024 Jun 8. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan–. 2024 Jun 8. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan–. PMID: 31424720 Free Books & Documents.
-
Sexual Harassment and Prevention Training.2024 Mar 29. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan–. 2024 Mar 29. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan–. PMID: 36508513 Free Books & Documents.
-
Home treatment for mental health problems: a systematic review.Health Technol Assess. 2001;5(15):1-139. doi: 10.3310/hta5150. Health Technol Assess. 2001. PMID: 11532236
-
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.Cochrane Database Syst Rev. 2021 Apr 19;4(4):CD011535. doi: 10.1002/14651858.CD011535.pub4. Cochrane Database Syst Rev. 2021. Update in: Cochrane Database Syst Rev. 2022 May 23;5:CD011535. doi: 10.1002/14651858.CD011535.pub5. PMID: 33871055 Free PMC article. Updated.
References
-
- Walsh CT; Garneau-Tsodikova S; Gatto GJ Protein Posttranslational Modifications: The Chemistry of Proteome Diversifications. Angew. Chem. Int. Ed Engl 2005, 44 (45), 7342–7372. - PubMed
-
- Drazic A; Myklebust LM; Ree R; Arnesen T The World of Protein Acetylation. Biochim. Biophys. Acta 2016, 1864 (10), 1372–1401. - PubMed
-
- Humphrey SJ; James DE; Mann M Protein Phosphorylation: A Major Switch Mechanism for Metabolic Regulation. Trends Endocrinol. Metab 2015, 26 (12), 676–687. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Miscellaneous