Albumin Corona Overturns Long-Acting Behaviors of Myristic Acid-Conjugated Quetiapine Nanosuspension
- PMID: 40384152
- PMCID: PMC12184080
- DOI: 10.1002/adhm.202500851
Albumin Corona Overturns Long-Acting Behaviors of Myristic Acid-Conjugated Quetiapine Nanosuspension
Abstract
This work aimed to investigate the interaction of a self-assembled myristic acid-conjugated quetiapine nanosuspension (QMN) with human serum albumin and its overturning effect on QMN's long-acting performance. Albumin corona formation modified the physicochemical properties and pharmacokinetic profile of QMN by overturning its pH-responsiveness and nano-aggregation behavior. The adsorption of albumin on QMN is initially triggered by electrostatic forces and later by hydrophobic-hydrophobic interactions with the conformational change of the albumin structure. While QMN is highly susceptible to ionic strength, pH, and albumin concentration in solution, albumin-precoated QMN (A-QMN) stabilized particle size and reversed the surface charge from ≈+60 to -16 mV, annulling the pH-responsive nanoaggregation behaviors under physiological pH conditions. Consequently, A-QMNs exhibited much faster in vitro release and more rapid in vivo absorption, resulting in a huge initial burst release and shorter duration within one week in plasma concentration-time profiles compared to the extended five-week duration of QMN following intramuscular injection in beagle dogs. These findings indicated the important role of serum proteins in the release kinetics and pharmacokinetics of the nanoparticles. The manipulation of protein corona can be utilized to control the physicochemical properties, biological states, and pharmacokinetics of intended long-acting nanosuspensions.
Keywords: albumin protein corona; fattigated drug nanosuspension; nanoparticle‐protein interaction; pH‐responsive nanoaggregates.
© 2025 The Author(s). Advanced Healthcare Materials published by Wiley‐VCH GmbH.
Conflict of interest statement
The authors declare no conflict of interest.
Figures





Similar articles
-
Novel pH-Responsive Structural Rearrangement of Myristic Acid-Conjugated Quetiapine Nanosuspension for Enhanced Long-Acting Delivery Performance.Adv Sci (Weinh). 2024 Oct;11(40):e2405200. doi: 10.1002/advs.202405200. Epub 2024 Sep 3. Adv Sci (Weinh). 2024. PMID: 39225461 Free PMC article.
-
Dispersion protocols have minimal impact on the biomolecular corona of advanced nanomaterials in cell culture assays.NanoImpact. 2025 Apr;38:100560. doi: 10.1016/j.impact.2025.100560. Epub 2025 Apr 14. NanoImpact. 2025. PMID: 40233923
-
Intermolecular Dynamics of Monoglyceride Mesophases with Their Biomacromolecular Corona.Mol Pharm. 2025 Jul 7;22(7):4221-4229. doi: 10.1021/acs.molpharmaceut.5c00435. Epub 2025 Jun 17. Mol Pharm. 2025. PMID: 40526833
-
A rapid and systematic review and economic evaluation of the clinical and cost-effectiveness of newer drugs for treatment of mania associated with bipolar affective disorder.Health Technol Assess. 2004 May;8(19):iii-iv, 1-187. doi: 10.3310/hta8190. Health Technol Assess. 2004. PMID: 15147609
-
Atypical antipsychotics for disruptive behaviour disorders in children and youths.Cochrane Database Syst Rev. 2017 Aug 9;8(8):CD008559. doi: 10.1002/14651858.CD008559.pub3. Cochrane Database Syst Rev. 2017. PMID: 28791693 Free PMC article.
References
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources