Chemical proteomics for a comprehensive understanding of functional activity and the interactome
- PMID: 40384449
- DOI: 10.1039/d5cs00381d
Chemical proteomics for a comprehensive understanding of functional activity and the interactome
Abstract
Traditional mass spectrometry (MS)-based proteomics aims to detect and measure protein expression on a global scale and elucidate the link between protein function and phenotypic characteristics. Although advances in MS technology have significantly broadened the scope of detectable proteomes, these methodologies primarily provide data on protein abundance and offer limited insights into their functional activities. Phenotypic traits emerge from the interplay between protein abundance and functional activity, making the accurate measurement of activity a critical but challenging task, owing to the complexity of biological systems. Furthermore, the biological function of a protein is strongly linked to its interaction with other molecules within the cellular environment. Chemical proteomics offers a complementary approach that uses a toolkit developed in chemical biology to map the molecular interactome and provide initial insights into the activities of specific target proteins. However, the value of these techniques lies not in isolation, but as part of a broader experimental workflow that includes follow-up biological investigations to validate the findings and elucidate their functional relevance. This tutorial review highlights the design principles of chemical tools and examines their applications in two key areas: (i) functional activity profiling of biomolecules and (ii) molecular proximity profiling for interactome characterization. We also discuss the importance of the experimental context in shaping data interpretation and ensuring the practical adoption of these methods by biologists. Although chemical proteomics is not a standalone solution, it represents a promising step toward next-generation omics technologies and advances our understanding of biological functions at the molecular level.
Similar articles
-
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.Cochrane Database Syst Rev. 2021 Apr 19;4(4):CD011535. doi: 10.1002/14651858.CD011535.pub4. Cochrane Database Syst Rev. 2021. Update in: Cochrane Database Syst Rev. 2022 May 23;5:CD011535. doi: 10.1002/14651858.CD011535.pub5. PMID: 33871055 Free PMC article. Updated.
-
Home treatment for mental health problems: a systematic review.Health Technol Assess. 2001;5(15):1-139. doi: 10.3310/hta5150. Health Technol Assess. 2001. PMID: 11532236
-
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.Cochrane Database Syst Rev. 2017 Dec 22;12(12):CD011535. doi: 10.1002/14651858.CD011535.pub2. Cochrane Database Syst Rev. 2017. Update in: Cochrane Database Syst Rev. 2020 Jan 9;1:CD011535. doi: 10.1002/14651858.CD011535.pub3. PMID: 29271481 Free PMC article. Updated.
-
The clinical effectiveness and cost-effectiveness of enzyme replacement therapy for Gaucher's disease: a systematic review.Health Technol Assess. 2006 Jul;10(24):iii-iv, ix-136. doi: 10.3310/hta10240. Health Technol Assess. 2006. PMID: 16796930
-
Assessing the comparative effects of interventions in COPD: a tutorial on network meta-analysis for clinicians.Respir Res. 2024 Dec 21;25(1):438. doi: 10.1186/s12931-024-03056-x. Respir Res. 2024. PMID: 39709425 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources