Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Jun 25;13(13):3598-3616.
doi: 10.1039/d5bm00364d.

Biofunctionalization of electrospun silk scaffolds with perlecan for vascular tissue engineering

Affiliations

Biofunctionalization of electrospun silk scaffolds with perlecan for vascular tissue engineering

Shouyuan Jiang et al. Biomater Sci. .

Abstract

Electrospun silk fibroin scaffolds have garnered significant interest in vascular tissue engineering due to their biocompatibility, mechanical strength, and tunable degradation. However, their lack of intrinsic cell-binding domains limits endothelialization, a critical factor for vascular graft success. This study explores the biofunctionalization of electrospun silk scaffolds with recombinant perlecan domain V (rDV) using plasma immersion ion implantation (PIII) treatment, a surface modification method enabling robust covalent immobilization without the use of reagents. The biofunctionalized scaffolds enhanced endothelial cell adhesion, proliferation, and retention under physiological flow conditions while inhibiting smooth muscle cell proliferation. Additionally, the functionalized scaffolds demonstrated angiogenic potential in vivo. These findings underscore the potential of rDV-functionalized silk scaffolds as a promising candidate for small-diameter vascular grafts, addressing key challenges of endothelialization and vascular cell modulation in clinical applications.

PubMed Disclaimer

MeSH terms

LinkOut - more resources