Deep learning-based Fast Volumetric Image Generation for Image-guided Proton Radiotherapy
- PMID: 40385936
- PMCID: PMC12079186
- DOI: 10.1109/trpms.2024.3439585
Deep learning-based Fast Volumetric Image Generation for Image-guided Proton Radiotherapy
Abstract
Very fast imaging techniques can enhance the precision of image-guided radiation therapy, which can be useful for external beam radiation therapy. This work aims to develop a deep learning (DL)-based image-guide framework to enable fast volumetric image reconstruction for accurate target localization for treating lung cancer patients with gating, and it is presented in the context of FLASH which leverages ultra-high dose-rate radiation to enhance the sparing of organs at risk without compromising tumor control probability. The proposed framework comprises four modules, including orthogonal kV x-ray projection acquisition, DL-based volumetric image generation, image quality analyses, and proton water equivalent thickness (WET) evaluation. We investigated volumetric image reconstruction using kV projection pairs with four different source angles. Thirty patients with lung targets were identified from an institutional database, each patient having a four-dimensional computed tomography (CT) dataset with ten respiratory phases. Considering all evaluation metrics, the kV projections with source angles of 135° and 225° yielded the optimal volumetric images. The patient-averaged mean absolute error, peak signal-to-noise ratio, structural similarity index measure, and WET error were 75±22 HU, 19±3.7 dB, 0.938±0.044, and -1.3%±4.1%. The proposed framework can rapidly deliver volumetric images to potentially guide proton FLASH treatment delivery systems.
Keywords: 4D CT; Deep learning; Image synthesis; Image-guided radiation therapy.
Update of
-
Deep learning-based Fast Volumetric Image Generation for Image-guided Proton FLASH Radiotherapy.Res Sq [Preprint]. 2023 Jul 26:rs.3.rs-3112632. doi: 10.21203/rs.3.rs-3112632/v1. Res Sq. 2023. Update in: IEEE Trans Radiat Plasma Med Sci. 2024 Nov;8(8):973-983. doi: 10.1109/trpms.2024.3439585. PMID: 37546731 Free PMC article. Updated. Preprint.
Similar articles
-
Deep learning-based Fast Volumetric Image Generation for Image-guided Proton FLASH Radiotherapy.Res Sq [Preprint]. 2023 Jul 26:rs.3.rs-3112632. doi: 10.21203/rs.3.rs-3112632/v1. Res Sq. 2023. Update in: IEEE Trans Radiat Plasma Med Sci. 2024 Nov;8(8):973-983. doi: 10.1109/trpms.2024.3439585. PMID: 37546731 Free PMC article. Updated. Preprint.
-
Deep learning-based fast volumetric imaging using kV and MV projection images for lung cancer radiotherapy: A feasibility study.Med Phys. 2023 Sep;50(9):5518-5527. doi: 10.1002/mp.16377. Epub 2023 Mar 24. Med Phys. 2023. PMID: 36939395 Free PMC article.
-
Advances in 4D medical imaging and 4D radiation therapy.Technol Cancer Res Treat. 2008 Feb;7(1):67-81. doi: 10.1177/153303460800700109. Technol Cancer Res Treat. 2008. PMID: 18198927 Review.
-
Deep learning-based real-time volumetric imaging for lung stereotactic body radiation therapy: a proof of concept study.Phys Med Biol. 2020 Dec 18;65(23):235003. doi: 10.1088/1361-6560/abc303. Phys Med Biol. 2020. PMID: 33080578 Free PMC article.
-
CT artifact correction for sparse and truncated projection data using generative adversarial networks.Med Phys. 2021 Feb;48(2):615-626. doi: 10.1002/mp.14504. Epub 2020 Dec 30. Med Phys. 2021. PMID: 32996149 Review.
Cited by
-
An open-source deep learning framework for respiratory motion monitoring and volumetric imaging during radiation therapy.Med Phys. 2025 Jul;52(7):e18015. doi: 10.1002/mp.18015. Med Phys. 2025. PMID: 40665474 Free PMC article.
-
Patient-Specific CBCT Synthesis for Real-time Tumor Tracking in Surface-guided Radiotherapy.ArXiv [Preprint]. 2024 Nov 1:arXiv:2410.23582v2. ArXiv. 2024. PMID: 39575119 Free PMC article. Preprint.
-
Real-time volumetric CBCT reconstruction using surface and X-ray imaging for image-guided radiotherapy.Med Image Anal. 2025 Oct;105:103694. doi: 10.1016/j.media.2025.103694. Epub 2025 Jun 20. Med Image Anal. 2025. PMID: 40644916
References
-
- Lomax A, “Intensity modulation methods for proton radiotherapy,” Physics in Medicine and Biology, vol. 44, no. 1, pp. 185–205, 1999/01/01, 1999. - PubMed
-
- Knopf A-C, and Lomax A, “In vivo proton range verification: a review,” Physics in Medicine and Biology, vol. 58, no. 15, pp. R131–R160, 2013/07/17, 2013. - PubMed
-
- Baumann BC, Mitra N, Harton JG, Xiao Y, Wojcieszynski AP, Gabriel PE, Zhong H, Geng H, Doucette A, Wei J, O’Dwyer PJ, Bekelman JE, and Metz JM, “Comparative Effectiveness of Proton vs Photon Therapy as Part of Concurrent Chemoradiotherapy for Locally Advanced Cancer,” JAMA Oncology, vol. 6, no. 2, pp. 237–246, 2020. - PMC - PubMed
-
- Albertini F, Hug EB, and Lomax AJ, “Is it necessary to plan with safety margins for actively scanned proton therapy?,” Physics in Medicine and Biology, vol. 56, no. 14, pp. 4399–4413, 2011/06/27, 2011. - PubMed
Grants and funding
LinkOut - more resources
Miscellaneous