Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1985 Feb;101(2):394-401.

Acute radiation effects on the content and release of plasminogen activator activity in cultured aortic endothelial cells

  • PMID: 4038805

Acute radiation effects on the content and release of plasminogen activator activity in cultured aortic endothelial cells

C Ts'ao et al. Radiat Res. 1985 Feb.

Abstract

Confluent monolayers from three lines of bovine aortic endothelial cells were exposed to a single dose of 10 Gy of 60Co gamma rays. Seventy-two hours later, the morphology of the irradiated and sham-irradiated monolayers was examined, and cellular DNA and protein contents were determined. In addition, the release of plasminogen activator (PA) activity into the culture media and PA activity in the cell lysates were assayed. Irradiated monolayers maintained their cobblestone appearance, but individual endothelial cells were enlarged considerably compared to sham-irradiated cells. DNA and protein contents in the irradiated monolayers were reduced to 43-50% and 72-95% of the control levels, respectively. These data indicate that radiation induced cell loss (detachment and/or lysis) from the monolayer, with hypertrophy of surviving (attached) cells to preserve the continuity of the monolayer surface. Total PA activity (lysate plus medium) in the irradiated dishes was reduced to 50-75% of the control level. However, when endothelial PA activity was expressed on the basis of DNA content, the irradiated monolayers from two of the three cell lines contained significantly more PA activity than did sham-irradiated monolayers. Most importantly, the percentage of the total PA activity released into the culture medium by irradiated cells (5-22%) was significantly (P less than 0.001) lower than that released by sham-irradiated cells (23-68%). These data suggest that fibrinolytic defects observed in irradiated tissues in situ may be attributable at least in part to a radiation-induced inhibition of PA release by vascular endothelial cells.

PubMed Disclaimer

Similar articles

Cited by

Publication types