Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 May 20.
doi: 10.1097/SLA.0000000000006759. Online ahead of print.

Novel Benchmark for Robotic Liver Resection - Bridging Tradition with Innovation

Zhihao Li  1 Matthias Pfister  2 Dimitri A Raptis  3 Yong Ma  4 Guangchao Yang  4 Linqiang Li  4 Xuan Song  4 Guillaume Millet  5 Stéphanie Truant  5 Raphael Venezia  6 Heithem Jeddou  7 Bastien Le Floch  7 Alain Valverde  8 Nicolas Peru  8 Patrick Pessaux  9 Fabio Giannone Codiglione  9   10 Jean-Yves Mabrut  11 Kayvan Mohkam  11 Antonio Sa Cunha  12 Chady Salloum  12 Pierre Y Blanc  13 Bertrand Le Roy  13 Claire Goumard  14 Olivier Scatton  14 Stylianos Tzedakis  15 David Fuks  15 Ismael Chaoui  16 Ashwin Rammohan  17 Silvia Gomes da Silva  18 Mafalda S N Sobral  18 Victor Lopez-Lopez  19 Leonardo Centonze  20   21 Zhu Zhu  22 Francesca Ratti  23 Rebecca Marino  23 Gianluca Rompianesi  24 Yawen Dong  25 Jimmy Shah  26 Philip C Müller  27 Taiga Wakabayashi  28 Fabricio F Coelho  29 Samy Castillo-Flores  30 Boram Lee  31 Virginia Viti  28 Yutaro Kato  32 Ugo Boggi  33 Ho-Seong Han  31 Patricio Polanco  30 Brian K P Goh  34   35 Tan-To Cheung  36 Mikhail Efanov  37 Fabrizio Panaro  38 Marcel Machado  29 Paulo Herman  29 Go Wakabayashi  10 Benedetto Ielpo  39 Beat P Müller  27 Alejandro Mejia  26 Patrick Starlinger  25 John Martinie  40 Roberto I Troisi  24 Luca Aldrighetti  23 Guodong Chen  22 Ricardo Robles-Campos  19 Gi Hong Choi  41 Rong Liu  42 Fabrizio Di Benedetto  43 Hugo Pinto Marques  18 Iswanto Sucandy  44 Mohamed Rela  17 Mathieu D'Hondt  16 Raffaele Brustia  6 Olivier Soubrane  45 Dieter C Broering  3 Pierre-Alain Clavien  1   2
Affiliations

Novel Benchmark for Robotic Liver Resection - Bridging Tradition with Innovation

Zhihao Li et al. Ann Surg. .

Abstract

Objective: To establish benchmark cutoffs for robotic liver resection (R-LR), encompassing both major and minor resections, and to determine the impact of patient selection on outcomes.

Background: R-LR is a key advancement in minimally invasive liver surgery but lacks standardized benchmarks, especially for minor resections. While guidelines endorse R-LR, its role in optimizing outcomes remains unclear. This study establishes the first benchmarks for R-LR, enabling comparisons across surgical modalities and refining patient selection.

Methods: This retrospective, multicenter study analyzed consecutive adult patients undergoing R-LR at 30 international centers (2020-2023). Benchmark centers had an annual case volume of ≥15 R-LR. Benchmark criteria included ASA ≤2, no major comorbidities, no prior liver resections, and Child-Pugh A status. Benchmark cutoffs for 14 key outcomes were set at the 50th and 75th percentiles of median values across benchmark centers. Multivariable logistic regression identified predictors of textbook outcomes.

Results: Eighteen high-volume centers contributed 4028 cases with 2632 (65.3%) meeting benchmark criteria. Malignancy was the indication in 29.6%, most commonly hepatocellular carcinoma followed by colorectal liver metastases. Major liver resection was performed in 42.6%. The distribution of Iwate difficulty scores was low (25.4%), intermediate (53.9%), advanced (15.9%), and expert (4.9%). Benchmark cutoffs were established for minor and major resection, and stratified by Iwate low (0-3), intermediate (4-6) and high (7-12): Open conversion (≤6.5% minor, ≤10.5% major), major complications within 90 days (≤5.2% minor, ≤16.7% major), R1 resection (≤9.2% minor, ≤6.7% major). Benchmark cases performed at low-volume centers were able to achieve outcomes within the corresponding benchmark cutoffs. In fact, patient selection reflected by the proportion of benchmark patients, rather than case volume, was associated with textbook outcomes.

Conclusions: This study defines R-LR benchmarks, emphasizing patient selection over center volume for optimal outcomes. Benchmark cutoffs guide training and support the expansion of R-LR.

Keywords: benchmarking; complication; iwate score; morbidity; patient selection; robotic liver resection; textbook outcome.

PubMed Disclaimer

Conflict of interest statement

The authors report no conflicts of interest.

LinkOut - more resources