Non-Invasive Tumor Budding Evaluation and Correlation with Treatment Response in Bladder Cancer: A Multi-Center Cohort Study
- PMID: 40391846
- PMCID: PMC12165028
- DOI: 10.1002/advs.202416161
Non-Invasive Tumor Budding Evaluation and Correlation with Treatment Response in Bladder Cancer: A Multi-Center Cohort Study
Abstract
The clinical benefits of neoadjuvant chemoimmunotherapy (NACI) are demonstrated in patients with bladder cancer (BCa); however, more than half fail to achieve a pathological complete response (pCR). This study utilizes multi-center cohorts of 2322 patients with pathologically diagnosed BCa, collected between January 1, 2014, and December 31, 2023, to explore the correlation between tumor budding (TB) status and NACI response and disease prognosis. A deep learning model is developed to noninvasively evaluate TB status based on CT images. The deep learning model accurately predicts the TB status, with area under the curve values of 0.932 (95% confidence interval: 0.898-0.965) in the training cohort, 0.944 (0.897-0.991) in the internal validation cohort, 0.882 (0.832-0.933) in external validation cohort 1, 0.944 (0.908-0.981) in the external validation cohort 2, and 0.854 (0.739-0.970) in the NACI validation cohort. Patients predicted to have a high TB status exhibit a worse prognosis (p < 0.05) and a lower pCR rate of 25.9% (7/20) than those predicted to have a low TB status (pCR rate: 73.9% [17/23]; p < 0.001). Hence, this model may be a reliable, noninvasive tool for predicting TB status, aiding clinicians in prognosis assessment and NACI strategy formulation.
Keywords: bladder cancer; deep learning; multicenter study; neoadjuvant chemoimmunotherapy; tumor budding.
© 2025 The Author(s). Advanced Science published by Wiley‐VCH GmbH.
Conflict of interest statement
The authors declare no conflict of interest.
Figures




References
-
- Bray F., Laversanne M., Sung H., Ferlay J., Siegel R. L., Soerjomataram I., Jemal A., CA Cancer J. Clin. 2024, 74, 229. - PubMed
-
- Teoh J. Y., Huang J., Ko W. Y., Lok V., Choi P., Ng C., Sengupta S., Mostafid H., Kamat A. M., Black P. C., Shariat S., Babjuk M., Wong M. C., Eur. Urol. 2020, 78, 893. - PubMed
-
- Powles T., Csoszi T., Ozguroglu M., Matsubara N., Geczi L., Cheng S. Y., Fradet Y., Oudard S., Vulsteke C., Morales B. R., Flechon A., Gunduz S., Loriot Y., Rodriguez‐Vida A., Mamtani R., Yu E. Y., Nam K., Imai K., Homet M. B., Alva A., Lancet Oncol. 2021, 22, 931.
-
- Hu J., Chen J., Ou Z., Chen H., Liu Z., Chen M., Zhang R., Yu A., Cao R., Zhang E., Guo X., Peng B., Deng D., Cheng C., Liu J., Li H., Zou Y., Deng R., Qin G., Li W., Wang L., Chen T., Pei X., Gong G., Tang J., Othmane B., Cai Z., Zhang C., Liu Z., Zu X., Cell Rep. Med. 2022, 3, 100785. - PMC - PubMed
Publication types
MeSH terms
Grants and funding
- 82373254/National Natural Science Foundation of China
- 82072831/National Natural Science Foundation of China
- U21A20383/National Natural Science Foundation of China
- 92459303/National Natural Science Foundation of China
- 2021A1515011541/Science and Technology Planning Project of Guangdong Province
- 2023A1515010258/Science and Technology Planning Project of Guangdong Province
- SL2022A04J01754/Guangzhou Municipal Science and Technology Project
- YHJH202303/Foundation of the Third Affiliated Hospital of Sun Yat-sen University
- SYS-5010Z-202401/Sun Yat-Sen Memorial Hospital Clinical Research 5010 Program
- 2021A1515110200/Basic and Applied Basic Research Foundation of Guangdong Province
- 2024A04J4702/Guangzhou Basic and Applied Basic Research Subject-Young Doctor's "Sailing" Project
- 2020B1111170006/Guangdong Provincial Clinical Research Center for Urological Diseases
LinkOut - more resources
Full Text Sources
Medical