Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Jun 9;26(6):3514-3524.
doi: 10.1021/acs.biomac.5c00125. Epub 2025 May 20.

Glycopolymer-Functionalized Gold Nanoparticles for the Detection of Western Diamondback Rattlesnake (Crotalus atrox) Venom

Affiliations

Glycopolymer-Functionalized Gold Nanoparticles for the Detection of Western Diamondback Rattlesnake (Crotalus atrox) Venom

Mahdi Hezwani et al. Biomacromolecules. .

Abstract

Every 5 minutes, 50 people are bitten by a snake worldwide; four will be permanently disabled and one will die. Most approaches to treating and diagnosing snake envenomation, a World Health Organization (WHO)-neglected tropical disease, rely on antibody-based solutions derived from animals or cell culture. Here, we present the first proof of concept for a glycopolymer-based ultraviolet-visible (UV-vis) assay to detect snake venom, specifically Western Diamondback Rattlesnake (Crotalus atrox) venom. This was achieved by synthesizing a library of glycan-terminated poly(hydroxyethyl acrylamide) functionalized gold nanoparticles. The library was analyzed using UV-vis spectroscopy and biolayer interferometry, with galactose-terminating systems found to demonstrate specificity for C. atrox venom, versus model lectins and Naja naja venom in UV-vis assays. This corroborates glycan array data in the literature and highlights our glycopolymer systems' potential as a diagnostic tool for snakebite, with the best particle system displaying a limit of detection of ∼20 μg·mL-1.

PubMed Disclaimer

Figures

1
1
Synthesis of gold nanoparticle library with glycan-terminated polymer tethers and analysis. (A) Polymerization of N-hydroxyethyl acrylamide synthesis by RAFT, followed by displacement of the PFP ester with aminoglycans, (B) gold nanoparticle functionalization with glycopolymer, (C) representative UV–vis spectra of (40 nm) nanoparticle systems, (D) C 1s X-ray photoelectron spectrum of Gal-2-pHEA42@AuNP40, and (E) written representation of all synthesized nanoparticles.
2
2
UV–vis absorbance spectra of three particle systems (Gal-2-PHEA42@AuNP40 versus SBA (A), WGA (B), C. atrox venom (C) and N. naja venom (D); Lac-1-PHEA42@AuNP16 versus SBA (F), WGA (G), and C. atrox venom (H) and N. naja venom (I); and Glc-2-PHEA42@AuNP16 versus SBA (K), WGA (L) and C. atrox venom (M)) versus varying concentrations of analyte. Normalized absorbance at 700 nm for the three particle systems (Gal-2-PHEA42@AuNP40 (E), Lac-1-PHEA42@AuNP16 (J), and Glc-2-PHEA42@AuNP16 (N)) versus SBA, WGA, C. atrox venom, and N. naja venom at varying concentrations.
3
3
Normalized absorbance at 700 nm for round 1 particles versus SBA, WGA, C. atrox venom, and N. naja venom at varying concentrations. (A) GalNAc-1-PHEA42@AuNP16, (B) GalNAc-1-PHEA42@AuNP40, (C) Gal-1-PHEA42@AuNP16, (D) Gal-1-PHEA42@AuNP40, (E) Gal-2-PHEA42@AuNP16, (F) Gal-2-PHEA42@AuNP40, (G) Glc-2-PHEA42@AuNP16, (H) Glc-2-PHEA42@AuNP40, (I) Man-2-PHEA42@AuNP16, (J) Man-2-PHEA42@AuNP40, and (K) Lac-1-PHEA42@AuNP16.
4
4
Normalized absorbance at 700 nm for round 2 and 3 particles versus SBA, WGA and C. atrox venom at varying concentrations. (A) Gal-2-PHEA15@AuNP16, (B) Gal-2-PHEA25@AuNP30, (C) Gal-2-PHEA42@AuNP30, (D) Lac-1-PHEA25@AuNP16, (E) Lac-1-PHEA25@AuNP30, and (K) Lac-1-PHEA52@AuNP40.
5
5
BLI analysis of Gal-2-pHEA42@AuNP40 aminopropylsilane sensors versus varying concentrations of analyte: (A) C. atrox venom and (B) N. naja venom.

References

    1. Roberts N. L. S., Johnson E. K., Zeng S. M., Hamilton E. B., Abdoli A., Alahdab F., Alipour V., Ancuceanu R., Andrei C. L., Anvari D., Arabloo J., Ausloos M., Awedew A. F., Badiye A. D., Bakkannavar S. M., Bhalla A., Bhardwaj N., Bhardwaj P., Bhaumik S., Bijani A., Boloor A., Cai T., Carvalho F., Chu D. T., Couto R. A. S., Dai X., Desta A. A., Do H. T., Earl L., Eftekhari A., Esmaeilzadeh F., Farzadfar F., Fernandes E., Filip I., Foroutan M., Franklin R. C., Gaidhane A. M., Gebregiorgis B. G., Gebremichael B., Ghashghaee A., Golechha M., Hamidi S., Haque S. E., Hayat K., Herteliu C., Ilesanmi O. S., Islam M. M., Jagnoor J., Kanchan T., Kapoor N., Khan E. A., Khatib M. N., Khundkar R., Krishan K., Kumar G. A., Kumar N., Landires I., Lim S. S., Madadin M., Maled V., Manafi N., Marczak L. B., Menezes R. G., Meretoja T. J., Miller T. R., Mohammadian-Hafshejani A., Mokdad A. H., Monteiro F. N. P., Moradi M., Nayak V. C., Nguyen C. T., Nguyen H. L. T., Nuñez-Samudio V., Ostroff S. M., Padubidri J. R., Pham H. Q., Pinheiro M., Pirestani M., Quazi Syed Z., Rabiee N., Radfar A., Rahimi-Movaghar V., Rao S. J., Rastogi P., Rawaf D. L., Rawaf S., Reiner R. C., Sahebkar A., Samy A. M., Sawhney M., Schwebel D. C., Senthilkumaran S., Shaikh M. A., Skryabin V. Y., Skryabina A. A., Soheili A., Stokes M. A., Thapar R., Tovani-Palone M. R., Tran B. X., Travillian R. S., Velazquez D. Z., Zhang Z. J., Naghavi M., Dandona R., Dandona L., James S. L., Pigott D. M., Murray C. J. L., Hay S. I., Vos T., Ong K. L.. Global Mortality of Snakebite Envenoming between 1990 and 2019. Nat. Commun. 2022;13(1):6160. doi: 10.1038/s41467-022-33627-9. - DOI - PMC - PubMed
    1. Pintor A. F. V., Ray N., Longbottom J., Bravo-Vega C. A., Yousefi M., Murray K. A., Ediriweera D. S., Diggle P. J.. Addressing the Global Snakebite Crisis with Geo-Spatial Analyses – Recent Advances and Future Direction. Toxicon X. 2021;11:100076. doi: 10.1016/j.toxcx.2021.100076. - DOI - PMC - PubMed
    1. Ratanabanangkoon K.. Merit and Demerit of Polyvalent Snake Antivenoms. J. Toxicol., Toxin Rev. 2003;22(1):77–89. doi: 10.1081/TXR-120019563. - DOI
    1. Isbister G. K.. Antivenom Availability, Delays and Use in Australia. Toxicon: X. 2023;17:100145. doi: 10.1016/j.toxcx.2022.100145. - DOI - PMC - PubMed
    1. Knudsen C., Jürgensen J. A., Føns S., Haack A. M., Friis R. U. W., Dam S. H., Bush S. P., White J., Laustsen A. H.. Snakebite Envenoming Diagnosis and Diagnostics. Front. Immunol. 2021;12:661457. doi: 10.3389/fimmu.2021.661457. - DOI - PMC - PubMed

Supplementary concepts

LinkOut - more resources