Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1977 May 11;460(2):220-9.
doi: 10.1016/0005-2728(77)90208-0.

Temperature dependence on the delayed fluorescence of chlorophyll a in blue-green algae

Temperature dependence on the delayed fluorescence of chlorophyll a in blue-green algae

T A Ono et al. Biochim Biophys Acta. .

Abstract

1. The delayed fluorescence of chlorophyll a was measured with a phosphoroscope by changing the temperature in a range of room temperatures in intact cells of blue-green algae, Anacystis nidulans, two strains of Anabaena variabilis and Plectonema boryanum, and other kinds of algae, Cyanidium caldarium and Chlorella pyrenoidosa. The induction of delayed fluorescence remarkably depended on the temperature of measurment. Nevertheless, the induction pattern was characterized by three levels of intensity; the initial rise level at the onset of excitation light, the maximum level after a period of excitation and the steady-state level after 10 min of excitation. 2. In A. nidulans and a strain of A. variabilis grown at various temperatures, close relationship was found between the phase transition of membrane lipids and the initial rise and the steady-state levels of delayed fluorescence. The initial rise level showed the maximum at the temperature of phase transition between the liquid crystalline and the mixed solid-liquid crystalline states, The steady-state levels showed a remarkable change from a high in the liquid crystalline state to a low level in the mixed solid-liquid crystalline state. 3. The millisecond decay kinetics of the delayed fluorescence measured at the steady-state level in A. nidulans grown at 38 degrees C consisted of two components with different decay rates. The half-decay time of the fast component was about 0.17 ms and was constant throughout the temperature range of measurement. The half decay time of slow component ranged from 0.6 to 1.5 ms, depending on the temperature of measurment.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources