Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2025 Jun 26:159:114890.
doi: 10.1016/j.intimp.2025.114890. Epub 2025 May 19.

Multi-target RNA interference: A disruptive next-generation strategy for precision treatment of rheumatoid arthritis

Affiliations
Free article
Review

Multi-target RNA interference: A disruptive next-generation strategy for precision treatment of rheumatoid arthritis

Yu Shan et al. Int Immunopharmacol. .
Free article

Abstract

Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic joint inflammation. Existing therapeutic regimens, including disease-modifying anti-rheumatic drugs (DMARDs) and biologics, exhibit incomplete efficacy and pronounced limitations. RNA interference (RNAi) utilizing small interfering RNA (siRNA) facilitates the precise silencing of key pathological drivers in rheumatoid arthritis (RA), such as tumor necrosis factor-alpha (TNF-α), interleukins IL-1 and IL-6, as well as pivotal inflammatory pathways including NF-κB. This comprehensive systematic review meticulously analyzes 140 studies focusing on therapeutic siRNA for RA. The utilization of siRNA in RA involves the profound inhibition of macrophage and fibroblast-like synoviocyte (FLS) activation through the strategic targeting of TNF, RELA, and MAPK/JAK signaling pathways. In addition, siRNA diminishes inflammatory responses by suppressing critical inflammasome constituents like NLRP3 and fosters the reestablishment of immune equilibrium via downregulation of Th17 differentiation factors and augmentation of regulatory T cell (Treg) functions. It also directly reduces the aggressiveness of FLS by inhibiting pathological signaling components such as CCN1, KHDRBS1 and E2F2. Experimental studies in rodent models have demonstrated that targeted delivery of siRNA via nanoparticles against pathogenic mediators significantly suppresses paw inflammation and mitigates joint destruction. Although challenges such as stability, off-target effects, and efficient delivery remain, advancements in molecular modifications and nanoparticle technology offer promising solutions to these obstacles. In conclusion, unlike the traditional single-target DMARDs or biologics, multi-target RNA interference presents a highly precise mechanism to inhibit intracellular inflammatory cascade and joint damage progression in RA, offering a potential deterrent to disease advancement.

Keywords: Fibroblast-like synoviocytes; NF-kappaB; Rheumatoid arthritis; TNF-alpha; Targeted delivery; siRNA.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Similar articles

Cited by

Substances