2D MoS2/Cu2O on 3D mesoporous silica as visible-NIR nanophotocatalysts for environmental and biomedical applications
- PMID: 40395008
- DOI: 10.1039/d5mh00214a
2D MoS2/Cu2O on 3D mesoporous silica as visible-NIR nanophotocatalysts for environmental and biomedical applications
Abstract
Nanostructures based on transition metal dichalcogenides have attracted considerable attention due to their tunable optoelectronic properties and large surface areas, showing a great potential as photocatalysts. Here, a novel supported structure based on 2D-MoS2/Cu2O nanoflakes grown on 3D mesoporous silica templates fabricated by a combination of solvothermal synthesis and e-beam deposition methods is presented. The synthesized MoS2 nanoflakes exhibited a combination of trigonal-prismatic 2H and distorted-trigonal 1T' phases, which contributed to a high density of active catalytic sites, facilitating efficient photogenerated charge transfer to analytes at the liquid interface. The deposition of Cu on the MoS2 nanoflakes enabled the formation of a semiconducting MoS2/Cu2O heterostructure with greatly enhanced photocatalytic activity. The supported MoS2/Cu2O nanoflakes showed excellent stability and an efficient generation of reactive oxygen species (ROS) with white and near infrared (NIR) light. The photocatalytic potential of the MoS2/Cu2O nanoflakes was established by the nearly complete degradation and mineralization of two organic pollutants (the antibiotic tetracycline and the biotoxin anatoxin-A) under low intensity white light, using ultralow catalyst concentration (ca. 4 μg mL-1). In addition, the use of MoS2/Cu2O nanostructures as photodynamic agents under low intensity NIR light was demonstrated. The NIR illuminated MoS2/Cu2O nanoflakes, placed at a distance of 120 μm from cultured cancer cells, enabled the complete elimination of cells via apoptosis, despite the large separation between them. These results underline the high photocatalytic activity of the supported MoS2/Cu2O nanoflakes to produce ROS with visible and NIR light, thus highlighting their suitability for environmental remediation and biomedical applications.
Similar articles
-
Catalytic Degradation by Metal-Organic Hybrid Nanocomposites Based on Metal/Metal Oxide Nanostructured Materials Prepared by Pulsed Laser Ablation.Microsc Res Tech. 2025 Sep;88(9):2492-2503. doi: 10.1002/jemt.24858. Epub 2025 Apr 16. Microsc Res Tech. 2025. PMID: 40237401
-
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.Cochrane Database Syst Rev. 2021 Apr 19;4(4):CD011535. doi: 10.1002/14651858.CD011535.pub4. Cochrane Database Syst Rev. 2021. Update in: Cochrane Database Syst Rev. 2022 May 23;5:CD011535. doi: 10.1002/14651858.CD011535.pub5. PMID: 33871055 Free PMC article. Updated.
-
Novel application of metabolic imaging of early embryos using a light-sheet on-a-chip device: a proof-of-concept study.Hum Reprod. 2025 Jan 1;40(1):41-55. doi: 10.1093/humrep/deae249. Hum Reprod. 2025. PMID: 39521726 Free PMC article.
-
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.Cochrane Database Syst Rev. 2017 Dec 22;12(12):CD011535. doi: 10.1002/14651858.CD011535.pub2. Cochrane Database Syst Rev. 2017. Update in: Cochrane Database Syst Rev. 2020 Jan 9;1:CD011535. doi: 10.1002/14651858.CD011535.pub3. PMID: 29271481 Free PMC article. Updated.
-
[Fast determination of per- and polyfluoroalkyl substances in human serum by cold-induced phase separation coupled with liquid chromatography-tandem mass spectrometry].Se Pu. 2025 Jul;43(7):756-766. doi: 10.3724/SP.J.1123.2024.11028. Se Pu. 2025. PMID: 40610770 Free PMC article. Chinese.
LinkOut - more resources
Full Text Sources
Miscellaneous