piv does not impact Pseudomonas aeruginosa virulence in Galleria mellonella
- PMID: 40396793
- PMCID: PMC12210898
- DOI: 10.1128/spectrum.02811-24
piv does not impact Pseudomonas aeruginosa virulence in Galleria mellonella
Abstract
Pseudomonas aeruginosa is an opportunistic human pathogen that can also infect mammals, invertebrates, and plants. Protease IV (PIV) is a secreted protease shown to be important in mammalian cornea, lung, and wound models of infection. It also contributes to P. aeruginosa virulence in many invertebrate models. Previous studies have shown that the expression of the gene encoding PIV is higher at 25°C than at 37°C. Thus, we hypothesized that piv would be more important for P. aeruginosa virulence at 25°C than at 37°C. To test this, we first demonstrated that more PIV is secreted by P. aeruginosa PAO1 cells grown at 25°C than at 37°C. We then determined the survival of larvae of the greater wax moth Galleria mellonella infected by PAO1 and an isogenic Δpiv mutant at both 25°C and 37°C. We found no significant difference in virulence between PAO1 and Δpiv at either 25°C or 37°C, although both strains were more virulent at 37°C than 25°C as measured by a decrease in median survival time. P. aeruginosa possesses an arsenal of virulence factors besides PIV, and thus loss of this single virulence factor may not result in attenuation in the highly susceptible G. mellonella larvae.IMPORTANCEPathogenesis of the important opportunistic pathogen Pseudomonas aeruginosa is often investigated using model organisms. Larvae of the greater wax moth, Galleria mellonella, are a popular non-mammalian model organism for P. aeruginosa infections that have been used to study highly attenuated mutants and characterize their defects in virulence. Our study shows that small differences in the virulence of P. aeruginosa, such as those caused by deleting the gene encoding a single virulence factor, may not be detectable in the G. mellonella model of infection. This is an important finding for researchers considering the choice of model organisms for virulence studies.
Keywords: Galleria; Pseudomonas aeruginosa; proteases; temperature regulation; virulence factors.
Conflict of interest statement
The authors declare no conflict of interest.
Figures



Similar articles
-
Refined methodology for quantifying Pseudomonas aeruginosa virulence using Galleria mellonella.Microbiol Spectr. 2025 Feb 4;13(2):e0166624. doi: 10.1128/spectrum.01666-24. Epub 2024 Dec 12. Microbiol Spectr. 2025. PMID: 39665556 Free PMC article.
-
Antibiotic strategies for eradicating Pseudomonas aeruginosa in people with cystic fibrosis.Cochrane Database Syst Rev. 2017 Apr 25;4(4):CD004197. doi: 10.1002/14651858.CD004197.pub5. Cochrane Database Syst Rev. 2017. Update in: Cochrane Database Syst Rev. 2023 Jun 2;6:CD004197. doi: 10.1002/14651858.CD004197.pub6. PMID: 28440853 Free PMC article. Updated.
-
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.Cochrane Database Syst Rev. 2017 Dec 22;12(12):CD011535. doi: 10.1002/14651858.CD011535.pub2. Cochrane Database Syst Rev. 2017. Update in: Cochrane Database Syst Rev. 2020 Jan 9;1:CD011535. doi: 10.1002/14651858.CD011535.pub3. PMID: 29271481 Free PMC article. Updated.
-
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.Cochrane Database Syst Rev. 2021 Apr 19;4(4):CD011535. doi: 10.1002/14651858.CD011535.pub4. Cochrane Database Syst Rev. 2021. Update in: Cochrane Database Syst Rev. 2022 May 23;5:CD011535. doi: 10.1002/14651858.CD011535.pub5. PMID: 33871055 Free PMC article. Updated.
-
Surveillance of Barrett's oesophagus: exploring the uncertainty through systematic review, expert workshop and economic modelling.Health Technol Assess. 2006 Mar;10(8):1-142, iii-iv. doi: 10.3310/hta10080. Health Technol Assess. 2006. PMID: 16545207
References
-
- Engel LS, Hobden JA, Moreau JM, Callegan MC, Hill JM, O’Callaghan RJ. 1997. Pseudomonas deficient in protease IV has significantly reduced corneal virulence. Invest Ophthalmol Vis Sci 38:1535–1542. - PubMed
-
- Engel LS, Hill JM, Moreau JM, Green LC, Hobden JA, O’Callaghan RJ. 1998. Pseudomonas aeruginosa protease IV produces corneal damage and contributes to bacterial virulence. Invest Ophthalmol Vis Sci 39:662–665. - PubMed
-
- O’Callaghan RJ, Engel LS, Hobden JA, Callegan MC, Green LC, Hill JM. 1996. Pseudomonas keratitis. the role of an uncharacterized exoprotein, protease IV, in corneal virulence. Invest Ophthalmol Vis Sci 37:534–543. - PubMed
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources