Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 May 21;17(799):eadn7527.
doi: 10.1126/scitranslmed.adn7527. Epub 2025 May 21.

SARS-CoV-2 induces neutrophil degranulation and differentiation into myeloid-derived suppressor cells associated with severe COVID-19

Affiliations

SARS-CoV-2 induces neutrophil degranulation and differentiation into myeloid-derived suppressor cells associated with severe COVID-19

Leon L Hsieh et al. Sci Transl Med. .

Abstract

Severe COVID-19 presents with a distinct immunological profile, characterized by elevated neutrophil and reduced lymphocyte counts, seen commonly in fungal and bacterial infections. This study demonstrates that patients hospitalized with COVID-19 show evidence of neutrophil degranulation and have increased expression of neutrophil surface lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1), a marker of polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs). Both early LOX-1 and programmed death-ligand 1 (PD-L1) expression on neutrophils were associated with development of severe disease. To determine whether tissue damage or inflammation is required to induce PMN-MDSCs or whether severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) directly activates neutrophils to become PMN-MDSCs, we incubated healthy human neutrophils with SARS-CoV-2. SARS-CoV-2 rapidly induced LOX-1 surface expression in healthy neutrophils independent of productive infection. LOX-1 induction was dependent on granule exocytosis and promoted up-regulation of reactive oxygen species, CD63, and PD-L1, enabling LOX-1+ neutrophils to suppress autologous T cell proliferation in vitro. These results support a role for PMN-MDSCs in mediating severe COVID-19, and inhibition of PD-L1 represents a potential therapeutic strategy for enhancing the immune response in acute SARS-CoV-2 infection.

PubMed Disclaimer

MeSH terms