Application of the Horner-Wadsworth-Emmons Olefination in the Construction of E-α,β-Unsaturated β-Boryl Nitriles
- PMID: 40397931
- PMCID: PMC12150335
- DOI: 10.1021/acs.joc.4c02915
Application of the Horner-Wadsworth-Emmons Olefination in the Construction of E-α,β-Unsaturated β-Boryl Nitriles
Abstract
Herein, we describe a simple transition-metal-free synthesis of E-α,β-unsaturated β-boryl nitriles by the Horner-Wadsworth-Emmons reaction starting from potassium acyltrifluoroborates. The methodology encompasses a broad range of alkyl and aryl substrates. The reaction conditions are simple, and the reaction products are in most cases isolated with good yields as pure E isomers without column chromatography.
Figures
Similar articles
-
Synthesis of unsaturated organotrifluoroborates via Wittig and Horner-Wadsworth-Emmons olefination.J Org Chem. 2006 Aug 4;71(16):6135-40. doi: 10.1021/jo060863w. J Org Chem. 2006. PMID: 16872197
-
Synthesis of fluorinated and nonfluorinated sugar alkenylphosphonates via highly stereoselective Horner-Wadsworth-Emmons olefination.Carbohydr Res. 2023 Nov;533:108941. doi: 10.1016/j.carres.2023.108941. Epub 2023 Sep 13. Carbohydr Res. 2023. PMID: 37717483
-
Facile synthesis of 7-alkyl-1,2,3,4-tetrahydro-1,8-naphthyridines as arginine mimetics using a Horner-Wadsworth-Emmons-based approach.Beilstein J Org Chem. 2020 Jul 8;16:1617-1626. doi: 10.3762/bjoc.16.134. eCollection 2020. Beilstein J Org Chem. 2020. PMID: 32704328 Free PMC article.
-
[Development of highly stereoselective reactions utilizing heteroatoms--new approach to the stereoselective Horner-Wadsworth-Emmons reaction].Yakugaku Zasshi. 2000 May;120(5):432-44. doi: 10.1248/yakushi1947.120.5_432. Yakugaku Zasshi. 2000. PMID: 10825807 Review. Japanese.
-
Exploring the Synthetic Potential of Horner-Wadsworth-Emmons Reaction Toward the Synthesis of Polyketide Based Natural Products: A Review.Top Curr Chem (Cham). 2025 Apr 26;383(2):20. doi: 10.1007/s41061-025-00504-0. Top Curr Chem (Cham). 2025. PMID: 40286003 Review.
References
-
- Kukushkin V. Yu., Pombeiro A. J. L.. Additions to Metal-Activated Organonitriles. Chem. Rev. 2002;102:1771–1802. doi: 10.1021/cr0103266. - DOI - PubMed
- Mu Y., Nguyen T. T., Koh M. J., Schrock R. R., Hoveyda A. H.. E- and Z-, Di- and Tri-Substituted Alkenyl Nitriles Through Catalytic Cross-Metathesis. Nat. Chem. 2019;11:478–487. doi: 10.1038/s41557-019-0233-x. - DOI - PMC - PubMed
- Xia Y., Jiang H., Wu W.. Recent Advances in Chemical Modifications of Nitriles. Eur. J. Org. Chem. 2021;2021:6658–6669. doi: 10.1002/ejoc.202101196. - DOI
- Rakshit A., Dhara H. N., Sahoo A. K., Patel B. K.. The Renaissance of Organo Nitriles in Organic Synthesis. Chem. - Asian J. 2022;17:e202200792. doi: 10.1002/asia.202200792. - DOI - PubMed
-
- Hall, D. G. Boronic Acids: Preparation and Applications. In Organic Synthesis, Medicine and Materials, Vols. 1 and 2; Wiley-VCH, 2011.
- Fernández, E. ; Whiting, A. . Synthesis and Application of Organoboron Compounds; Springer, 2015.
- Hey-Hawkins, E. ; Viñas Teixidor, C. . Boron-Based Compounds: Potential and Emerging Applications in Medicine; Wiley-VCH, 2018.
- Fyfe J. W. B., Watson A. J. B.. Recent Developments in Organoboron Chemistry: Old Dogs, New Tricks. Chem. 2017;3:31–55. doi: 10.1016/j.chempr.2017.05.008. - DOI
- Bastick K. A. C., Roberts D. D., Watson A. J. B.. The Current Utility and Future Potential of Multiborylated Alkanes. Nat. Rev. Chem. 2024;8:741–761. doi: 10.1038/s41570-024-00650-x. - DOI - PubMed
-
- Gosak K., Časar Z.. Asymmetric Hydrogenation of Boron-Substituted Olefin, Enamine, and Imine Derivatives. Tetrahedron Lett. 2023;133:154804. doi: 10.1016/j.tetlet.2023.154804. - DOI
-
- Altarejos J., Valero A., Manzano R., Carreras J.. Synthesis of Tri- and Tetrasubstituted Alkenyl Boronates from Alkynes. Eur. J. Org. Chem. 2022;2022:e202200521. doi: 10.1002/ejoc.202200521. - DOI
- Lou Y., Wang J., Gong G., Guan F., Lu J., Wen J., Zhang X.. Catalytic Asymmetric Hydrogenation of (Z)-α-Dehydroamido Boronate Esters: Direct Route to Alkyl-Substituted α-Amidoboronic Esters. Chem. Sci. 2020;11:851–855. doi: 10.1039/C9SC04534A. - DOI - PMC - PubMed
- Sokolnicki T., Alharbi M. M., van Ingen Y., Rahim S., Pramanik M., Roldan A., Walkowiak J., Melen R. L.. Reactivity of a Series of Triaryl Borates, B(OArx)3, in Hydroboration Catalysis. Dalton Trans. 2023;52:16118–16122. doi: 10.1039/D3DT03333C. - DOI - PubMed
LinkOut - more resources
Full Text Sources