Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Jun 6;27(22):5720-5725.
doi: 10.1021/acs.orglett.5c01478. Epub 2025 May 21.

2-(Cyanomethyl)benzimidazole Derivatives as 1,3-Dicarbonyl Analogues for a Kinetically Controlled Diastereo- and Enantioselective Mannich-Type Reaction Catalyzed by Chiral Phosphoric Acid

Affiliations

2-(Cyanomethyl)benzimidazole Derivatives as 1,3-Dicarbonyl Analogues for a Kinetically Controlled Diastereo- and Enantioselective Mannich-Type Reaction Catalyzed by Chiral Phosphoric Acid

Haiting Ye et al. Org Lett. .

Abstract

An asymmetric Mannich-type reaction of N-protected 2-(cyanomethyl)benzimidazoles with N-benzoyl imines was developed by using chiral phosphoric acid as a chiral Brønsted acid catalyst. Products having vicinal trisubstituted carbon stereogenic centers were formed in a highly diastereo- and enantioselective manner, even though one of the stereogenic centers had an active methine proton. Comprehensive control experiments revealed that high stereoselectivity was achieved through a kinetically controlled process.

PubMed Disclaimer

Figures

1
1
Tautomerization of a pronucleophile and formation of a nucleophilic addition product. (a) 1,3-Dicarbonyl compound. (b) 2-Alkylbenzimidazole derivative having an EWG and a PG.
1
1. Diastereo- and Enantioselective Mannich-Type Reaction of 2-(Cyanomethyl)­benzimidazoles 1 with N-Benzoyl Imines 2 Catalyzed by CPA (R)-3
2
2. Control Experiments: (a) Monitoring the Reaction, (b) Retro Reaction, and (c) Solvent Effect
2
2
Energy diagram of the reaction of 1a with 2a catalyzed by (R)-3a. The relative free energy (kcal/mol) of the sum of 1a, 2a, and (R)-3a is set to zero.

Similar articles

References

    1. For reviews of benzimidazole derivatives as pharmerceutical chromophores, see:

    2. Rajasekhar S., Maiti B., Balamurali M. M., Chanda K.. Synthesis and Medicinal Applications of Benzimidazoles: An Overview. Curr. Org. Synth. 2016;14:40–60. doi: 10.2174/1570179413666160818151932. - DOI
    3. Patel A., Shah D., Patel N., Patel K., Soni N., Nagani A., Parikh V., Shah H., Bambharoliya T.. Benzimidazole as Ubiquitous Structural Fragment: An Update on Development of its Green Synthetic Approaches. Mini-Rev. Org. Chem. 2021;18:1064–1085. doi: 10.2174/1570193X17999201211194908. - DOI
    4. Monga J., Ghosh N. S., Rani I., Singh R., Deswal G., Dhingra A. K., Grewal A. S.. Unlocking the Pharmacological Potential of Benzimidazole Derivatives: A Pathway to Drug Development. Curr. Top. Med. Chem. 2024;24:437–485. doi: 10.2174/0115680266283641240109080047. - DOI - PubMed
    5. El Alami A., Sdassi H., Bouzikri S.. Review of Synthesis Process of Benzimidazole-heterocycle Hybrid Compounds. Synth. Commun. 2024;54:613–635. doi: 10.1080/00397911.2024.2316718. - DOI
    1. For Brønsted acid-promoted functionalization at the α-position of azaarene derivatives, see:

    2. Niu R., Xiao J., Liang T., Li X.. Facile Synthesis of Azaarene-Substituted 3-Hydroxy-2-Oxindoles via Brønsted Acid Catalyzed sp3 C–H Functionalization. Org. Lett. 2012;14:676–679. doi: 10.1021/ol2030982. - DOI - PubMed
    3. Wang F. F., Luo C. P., Wang Y., Deng G., Yang L.. Brønsted Acid Promoted Benzylic C–H Bond Functionalization of Azaarenes: Nucleophilic Addition to Aldehydes. Org. Biomol. Chem. 2012;10:8605–8608. doi: 10.1039/c2ob26604k. - DOI - PubMed
    4. Li H. Y., Xing L. J., Xu T., Wang P., Liu R. H., Wang B.. An Addition of Benzylic sp3 C–H to Electron-Deficient Olefins. Tetrahedron Lett. 2013;54:858–860. doi: 10.1016/j.tetlet.2012.11.100. - DOI
    5. Jin J. J., Wang D. C., Niu H. Y., Wu S., Qu G. R., Zhang Z. B., Guo H. M.. Brønsted Acid Catalyzed Synthesis of 1,3-Di­(2-Quinolyl)­Propane Derivatives via Tandem C­(sp3)–H Functionalization. Tetrahedron. 2013;69:6579–6584. doi: 10.1016/j.tet.2013.05.135. - DOI
    6. Lansakara A. I., Farrell D. P., Pigge F. C.. Brønsted Acid Catalyzed Intramolecular Benzylic Cyclizations of Alkylpyridines. Org. Biomol. Chem. 2014;12:1090–1099. doi: 10.1039/C3OB42039F. - DOI - PubMed
    7. Wang F. F., Luo C. P., Deng G., Yang L.. C­(sp3)–C­(sp3) Bond Formation via Copper/Brønsted Acid Co-Catalyzed C­(sp3)–H Bond Oxidative Cross-Dehydrogenative-Coupling (CDC) of Azaarenes. Green Chem. 2014;16:2428–2431. doi: 10.1039/c4gc00038b. - DOI
    8. Gao X., Zhang F., Deng G., Yang L.. Brønsted Acid Catalyzed Benzylic C–H Bond Functionalization of Azaarenes: Nucleophilic Addition to Nitroso Compounds. Org. Lett. 2014;16:3664–3667. doi: 10.1021/ol501422k. - DOI - PubMed
    9. Zhu Z. Q., Bai P., Huang Z. Z.. Dehydrogenative Cross-Coupling Reaction by Cooperative Transition-Metal and Brønsted Acid Catalysis for the Synthesis of β-Quinolinyl α-Amino Acid Esters. Org. Lett. 2014;16:4881–4883. doi: 10.1021/ol502402s. - DOI - PubMed
    1. For reviews on enantioselective reactions of azaarene derivatives, see:

    2. Best D., Lam H. W.. C = N-Containing Azaarenes as Activating Groups in Enantioselective Catalysis. J. Org. Chem. 2014;79:831–845. doi: 10.1021/jo402414k. - DOI - PubMed
    3. Meazza M., Rios R.. Enantioselective Synthesis of Alkyl Azaarenes. Asian J. Org. Chem. 2019;8:1800–1812. doi: 10.1002/ajoc.201900363. - DOI
    1. For 2-alkylazaarene derivatives as the nucleophile for enantioselective reactions, see:

    2. Trost B. M., Thaisrivongs D. A., Hartwig J.. Palladium-Catalyzed Asymmetric Allylic Alkylations of Polynitrogen-Containing Aromatic Heterocycles. J. Am. Chem. Soc. 2011;133:12439–12441. doi: 10.1021/ja205523e. - DOI - PubMed
    3. Vera S., Liu Y., Marigo M., Escudero-Adán E. C., Melchiorre P.. Asymmetric Michael Addition of Nitrobenzyl Pyridines to Enals via Iminium Catalysis. Synlett. 2011;2011:489–494. doi: 10.1055/s-0030-1259518. - DOI
    4. Fallan C., Lam H. W.. Enantioselective Nickel-Catalyzed Michael Additions of Azaarylacetates and Acetamides to Nitroalkenes. Chem. - Eur. J. 2012;18:11214–11218. doi: 10.1002/chem.201202093. - DOI - PubMed
    5. Best D., Kujawa S., Lam H. W.. Diastereo- and Enantioselective Pd­(II)-Catalyzed Additions of 2-Alkylazaarenes to N-Boc Imines and Nitroalkenes. J. Am. Chem. Soc. 2012;134:18193–18196. doi: 10.1021/ja3083494. - DOI - PubMed
    6. Bastida I., San Segundo M., Lopez R., Palomo C.. Strategy for Stereoselective Metal-free α-Functionalization of 2-Azaaryl Acetates with N-Boc Imines. Chem. - Eur. J. 2017;23:13332–13336. doi: 10.1002/chem.201703748. - DOI - PubMed
    7. Li J., Fu Y., Qin C., Yu Y., Li H., Wang W.. Asymmetric Synthesis of Isoquinolinonaphthyridines Catalyzed by a Chiral Brønsted Acid. Org. Biomol. Chem. 2017;15:6474–6477. doi: 10.1039/C7OB01527E. - DOI - PubMed
    8. Jiang X., Boehm P., Hartwig J. F.. Stereodivergent Allylation of Azaaryl Acetamides and Acetates by Synergistic Iridium and Copper Catalysis. J. Am. Chem. Soc. 2018;140:1239–1242. doi: 10.1021/jacs.7b12824. - DOI - PMC - PubMed
    9. Hu Q., Kondoh A., Terada M.. Enantioselective Direct Mannich-Type Reactions of 2-Benzylpyridine N-Oxides Catalyzed by Chiral Bis­(guanidino)­iminophosphorane Organosuperbase. Chem. Sci. 2018;9:4348–4351. doi: 10.1039/C8SC00808F. - DOI - PMC - PubMed
    10. Wang Y., Wang K., Cao W., Liu X., Feng X.. Diastereo- and Enantioselective 1,6-Conjugate Addition of 2-Azaarylacetamides to Para-Quinone Methides. Org. Lett. 2019;21:6063–6067. doi: 10.1021/acs.orglett.9b02215. - DOI - PubMed
    11. Meazza M., Rios R.. Highly Regio- and Enantioselective Organocatalytic γ-Allylic Alkylation of Quinolines. Adv. Synth. Catal. 2021;363:1341–1345. doi: 10.1002/adsc.202001213. - DOI
    12. Shen Y.-B., Qian H.-L., Yang L., Zhou S., Rao H.-W., Wang Z.-H., You Y., Zhang Y.-P., Yin J.-Q., Zhao J.-Q., Zhang W., Yuan W.-C.. Cu-Catalyzed Direct Asymmetric Mannich Reaction of 2-Alkylazaarenes and Isatin-Derived Ketimines. Org. Lett. 2024;26:1699–1704. doi: 10.1021/acs.orglett.4c00227. - DOI - PubMed
    1. For enantioselective construction of tetrasubstituted carbon using azaarene derivatives as nucleophiles, see:

    2. Izquierdo J., Landa A., Bastida I., López R., Oiarbide M., Palomo C.. Base-Catalyzed Asymmetric α-Functionalization of 2-(Cyanomethyl)­azaarene N-Oxides Leading to Quaternary Stereocenters. J. Am. Chem. Soc. 2016;138:3282–3285. doi: 10.1021/jacs.5b13385. - DOI - PubMed
    3. Meazza M., Potter M., Pitak M. B., Coles S. J., Mazzanti A., Rios R.. Highly Enantioselective Synthesis of Alkylpyridine Derivatives through a Michael/Michael/Aldol Cascade Reaction. Eur. J. Org. Chem. 2017;2017:719–725. doi: 10.1002/ejoc.201601491. - DOI
    4. Wang K., Chen C., Liu X., Li D., Peng T., Liu X., Yang D., Wang L.. Enantioselective Reaction between 2-(Cyanomethyl)­Azaarenes and N-Boc-Amino Sulfones. Org. Lett. 2018;20:5260–5263. doi: 10.1021/acs.orglett.8b02205. - DOI - PubMed
    5. Das A., Joshi H., Singh V. K.. Asymmetric α-Functionalization of 2-Alkyl Azaarenes: Synthesis of Tertiary Fluorides Having Vicinal Stereogenic Centers. Org. Lett. 2021;23:9441–9445. doi: 10.1021/acs.orglett.1c03626. - DOI - PubMed
    6. Wang Z.-Q., Liu Z.-C., Huang X., Yin L.. Construction of Halogenated Tetrasubstituted Carbon Centers Through Copper­(I)-catalyzed Asymmetric Alkylation of 2-Azaarylesters. Cell Rep. Phys. Sci. 2024;5:101822. doi: 10.1016/j.xcrp.2024.101822. - DOI
    7. Wen H.-C., Chen W., Li M., Ma C., Wang J.-F., Fu A., Xu S.-Q., Zhou Y.-F., Ni S.-F., Mao B.. Chiral Phosphoric Acid-catalyzed Asymmetric Epoxidation of Alkenyl Aza-heteroarenes Using Hydrogen Peroxide. Nat. Commun. 2024;15:5277. doi: 10.1038/s41467-024-49435-2. - DOI - PMC - PubMed
    8. Lapray A., Hiebel M.-A., Oudeyer S., Lohier J.-F., Suzenet F., Brière J.-F.. 3-Alkyl-1,2,4-triazines as Heterocyclic Platforms for Organocatalytic Enantioselective Benzylic C–H Functionalization. Org. Lett. 2025;27:1504–1510. doi: 10.1021/acs.orglett.5c00008. - DOI - PubMed

LinkOut - more resources