Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 May 21;15(1):17592.
doi: 10.1038/s41598-025-02531-9.

Design of ZnO-VSe2 nanocomposite for high performance asymmetric supercapacitors

Affiliations

Design of ZnO-VSe2 nanocomposite for high performance asymmetric supercapacitors

Danish Arif et al. Sci Rep. .

Abstract

Supercapacitors exhibit limitations such as low energy density, high self-discharge rates, and degradation of electrochemical performance over extended cycling. This study presents the development of a high-performance asymmetric supercapacitor by synthesizing novel ZnO-VSe2 nanocomposites through wet-chemical methods, aiming to enhance capacity, energy density, and durability. The capacitive performance of these materials was systematically evaluated in an aqueous alkaline electrolyte (KOH) at a concentration of 2 M. ZnO-VSe2 composite demonstrates superior electrochemical energy storage capabilities, achieving a specific capacitance of 898 F/g and reducing overall resistance, enabling rapid electrolyte diffusion. These optimized electrochemical characteristics underscore the potential of ZnO-VSe2 for energy storage applications. Specifically, the ZnO-VSe2||AC asymmetric supercapacitor achieved an impressive capacitance of 260 F/g, an energy density of 71 Wh/kg, and a maximum power output of 6948 W/kg, along with a remarkable stability of 89.1% at a current density of 10 A/g over 5000 cycles. The proposed methodology offers a cost-effective and promising approach for evolving high-energy hybrid supercapacitors for energy storage applications.

Keywords: Composite materials; Energy density; Specific capacitance; Supercapacitor; VSe2; ZnO.

PubMed Disclaimer

Conflict of interest statement

Declarations. Competing interests: The authors declare no competing interests.

Figures

Fig. 1
Fig. 1
(a) XRD of ZnO, VSe2 and ZnO-VSe2 nanocomposite, (b) Raman spectra of ZnO, VSe2 and ZnO-VSe2 nanocomposite.
Fig. 2
Fig. 2
SEM micrograph of (a) ZnO, (b) VSe2, (c) ZnO-VSe2 nanocomposite.
Fig. 3
Fig. 3
EDX spectrum of (a) ZnO, (b) VSe2, (c) ZnO-VSe2 nanocomposite.
Fig. 4
Fig. 4
CV curve of (a) ZnO, (b) VSe2, (c) ZnO-VSe2 nanocomposite, (d) CV comparison of ZnO, VSe2 and ZnO-VSe2 nanocomposite.
Fig. 5
Fig. 5
Square root of scan rate vs. peak current (a) ZnO, (b) VSe2, (c) ZnO-VSe2 nanocomposite.
Fig. 6
Fig. 6
Capacitive and diffusion contribution at 50 mV/s (a) ZnO, (b) VSe2, (c) ZnO-VSe2 (d) Capacitive and diffusion contribution ZnO at all scan rates, (e) capacitive and diffusion contribution VSe2 at all scan rates and (f) capacitive and diffusion contribution ZnO-VSe2 at all scan rates.
Fig. 7
Fig. 7
(a) Variation of ΔJ with scan rate for ZnO, VSe2, and ZnO–VSe2 electrodes (b) ECSA comparison for ZnO, VSe2, and ZnO–VSe2 electrodes.
Fig. 8
Fig. 8
CD profile of (a) ZnO, (b) VSe2, (c) ZnO-VSe2 nanocomposite, (d) CV comparison of ZnO, VSe2 and ZnO-VSe2 nanocomposite.
Fig. 9
Fig. 9
(a) Specific capacitance vs. current density, (b) impedance plot.
Fig. 10
Fig. 10
(a) CV curve of activated carbon, (b) GCD profile of activated carbon.
Fig. 11
Fig. 11
Evaluation of energy storage performance in two-electrode configuration (a) CV curve of ZnO-VSe2||AC ASC, (b) CD curve of ZnO-VSe2||AC ASC, (c) specific capacitance vs. current density of ZnO-VSe2||AC ASC, (d) Ragone plot of ZnO-VSe2||AC ASC.
Fig. 12
Fig. 12
(a) Impedance plot of ZnO-VSe2||AC ASC, insert equivalent circuit model. (b) Cyclic stability and coulombic efficiency of ZnO-VSe2||AC ASC.
Fig. 13
Fig. 13
(a) Slurry coated on substrate, (b) photograph of an LED illuminated by a package supercapacitor and (c) photograph of red, green and yellow LEDs illuminated by a package supercapacitor.

References

    1. Liu, D. D. et al. Physics-informed neural networks for phase-field simulation in designing high energy storage performance polymer nanocomposites. Appl. Phys. Lett.126 (2025).
    1. Wang, Z., Feng, Z., Hu, C., Li, X. & Zhu, Y. Enhancing battery performance under motor overload drive with a battery–supercapacitor hybrid energy storage system. J. Power Sources. 642, 236680 (2025).
    1. Cai, D. et al. Binder-Free MOF‐Based and MOF‐Derived nanoarrays for flexible electrochemical energy storage: progress and perspectives. Small20, 2305778 (2024). - PubMed
    1. Gao, L. et al. Zinc Selenide/cobalt Selenide in nitrogen-doped carbon frameworks as anode materials for high-performance sodium-ion hybrid capacitors. Adv. Compos. Hybrid. Mater.7, 144 (2024).
    1. Li, X. et al. Effect of microstructure on electrochemical performance of electrode materials for microsupercapacitor. Mater. Lett.346, 134481 (2023).

LinkOut - more resources