Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Sep;182(17):4147-4167.
doi: 10.1111/bph.70075. Epub 2025 May 21.

Casdatifan (AB521) is a novel and potent allosteric small molecule inhibitor of protumourigenic HIF-2α dependent transcription

Affiliations

Casdatifan (AB521) is a novel and potent allosteric small molecule inhibitor of protumourigenic HIF-2α dependent transcription

Patrick G Schweickert et al. Br J Pharmacol. 2025 Sep.

Abstract

Background and purpose: Hypoxia-inducible factor 2α (HIF-2α) is a transcription factor that mediates the expression of genes critical for cell adaptation and survival in low oxygen (hypoxic) conditions. In cancer, hypoxic conditions or molecular alterations within cancer cells can lead to HIF-2α accumulation and promote tumour growth and progression. Inactivating mutations in the von Hippel-Lindau (VHL) gene disable the oxygen-dependent HIF-2α degradation pathway and cause constitutive HIF-2α activity. VHL mutations are prevalent in clear cell renal cell carcinoma (ccRCC) where HIF-2α is a known tumourigenic driver. HIF-2α inhibition was shown to improve ccRCC patient outcomes clinically, warranting development of next-generation inhibitors.

Experimental approach: Pharmacological effects of a novel small molecule allosteric inhibitor of HIF-2α, AB521 (casdatifan), were evaluated using in vitro cell-based assays and in vivo mouse models.

Key results: AB521 inhibited HIF-2α-mediated transcription in cancer cells, endothelial cells, and M2-polarised macrophages. AB521 was selective for HIF-2α, displaying no activity against HIF-1α, and did not exhibit off-target cytotoxicity. When delivered orally to mice, AB521 caused dose-dependent decreases in HIF-2α-associated pharmacodynamic markers and significant regression of human ccRCC xenograft tumours. AB521 combined favourably with cabozantinib, a standard of care tyrosine kinase inhibitor, or zimberelimab, a clinical-stage anti-PD-1 antibody, in ccRCC xenograft studies.

Conclusions and implications: AB521 is a potent, selective and orally bioavailable HIF-2α inhibitor, with favourable pharmacological properties, that is being explored clinically for the treatment of ccRCC.

Keywords: AB521; HIF‐2α; VHL mutation; casdatifan; clear cell renal cell carcinoma; renal cancer; small molecule inhibitor.

PubMed Disclaimer

References

REFERENCES

    1. Albanese, A., Daly, L. A., Mennerich, D., Kietzmann, T., & Sée, V. (2021). The role of hypoxia‐inducible factor post‐translational modifications in regulating its localisation, stability, and activity. International Journal of Molecular Sciences, 22(1), 1–18. https://doi.org/10.3390/ijms22010268
    1. Alexander, S., Fabbro, D., Kelly, E., Mathie, A. A., Peters, J. A., Veale, E. L., Armstrong, J. F., Faccenda, E., Harding, S. D., Davies, J. A., Annett, S., Boison, D., Burns, K. E., Dessauer, C., Gertsch, J., Helsby, N. A., Izzo, A. A., Ostrom, R., Papapetropoulos, A., … Wong, S. S. (2023). The Concise Guide to PHARMACOLOGY 2023/24: Enzymes. British Journal of Pharmacology, 180(Suppl 2), S289–S373.
    1. Alexander, S., Kelly, E., Mathie, A., Peters, J. A., Veale, E. L., Armstrong, J. F., Buneman, O. P., Faccenda, E., Harding, S. D., Spedding, M., Cidlowski, J. A., Fabbro, D., Davenport, A. P., Striessnig, J., Davies, J. A., Ahlers‐Dannen, K. E., Alqinyah, M., Arumugam, T. V., Bodle, C., … Zolghadri, Y. (2023). The Concise Guide to PHARMACOLOGY 2023/24: Introduction and other protein targets. British Journal of Pharmacology, 180(Suppl 2), S1–S22.
    1. Alexander, S. P. H., Kelly, E., Mathie, A., Peters, J. A., Veale, E. L., Armstrong, J. F., Faccenda, E., Harding, S. D., Pawson, A. J., Southan, C., Buneman, O. P., Cidlowski, J. A., Christopoulos, A., Davenport, A. P., Fabbro, D., Spedding, M., Striessnig, J., Davies, J. A., Ahlers‐Dannen, K. E., … Zolghadri, Y. (2021). The Concise Guide to PHARMACOLOGY 2021/22: Introduction and other protein targets. British Journal of Pharmacology, 178(S1), S1–S26. https://doi.org/10.1111/bph.15537
    1. Alexander, S. P. H., Roberts, R. E., Broughton, B. R. S., Sobey, C. G., George, C. H., Stanford, S. C., Cirino, G., Docherty, J. R., Giembycz, M. A., Hoyer, D., Insel, P. A., Izzo, A. A., Ji, Y., MacEwan, D. J., Mangum, J., Wonnacott, S., & Ahluwalia, A. (2018). Goals and practicalities of immunoblotting and immunohistochemistry: A guide for submission to the British Journal of Pharmacology. British Journal of Pharmacology, 175(3), 407–411. https://doi.org/10.1111/bph.14112

MeSH terms

Substances

Grants and funding

LinkOut - more resources