Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2025;61(5):105.
doi: 10.1140/epja/s10050-025-01563-z. Epub 2025 May 19.

Neutron capture measurements for s-process nucleosynthesis: A review about CERN n_TOF developments and contributions

C Domingo-Pardo  1 O Aberle  2 V Alcayne  3 G Alpar  4 M Al Halabi  5 S Amaducci  6 V Babiano  7 M Bacak  2   8 J Balibrea-Correa  1 J Bartolomé  9 A P Bernardes  2 B Bernardino Gameiro  1 E Berthoumieux  10 R Beyer  11 M Birch  8 M Boromiza  12 D Bosnar  13 B Brusasco  7 M Caamaño  14 A Cahuzac  10 F Calviño  7 M Calviani  2 D Cano-Ott  3 A Casanovas  7 D M Castelluccio  15   16 D Catlett  4 F Cerutti  2 G Cescutti  17   18 E Chiaveri  2   8 G Claps  19 P Colombetti  20   21 N Colonna  22 P Console Camprini  15   16 G Cortés  7 M A Cortés-Giraldo  9 L Cosentino  6 S Cristallo  23   24 A D'Ottavi  8 G de la Fuente Rosales  1 S F Dellmann  5 M Diakaki  25 M Di Castro  2 A Di Chicco  26 M Dietz  26 E Dupont  10 I Durán  14 Z Eleme  27 M Eslami  28 S Fargier  2 B Fernández-Domínguez  14 P Finocchiaro  6 W Flanagan  4 V Furman  29 A Gandhi  12 F García-Infantes  2   30 A Gawlik-Ramiega  31 G Gervino  20   21 S Gilardoni  2 E González-Romero  3 S Goula  27 E Griesmayer  32 C Guerrero  9 F Gunsing  10 C Gustavino  33 J Heyse  34 W Hillman  8 D G Jenkins  28 E Jericha  32 A Junghans  11 Y Kadi  2 K Kaperoni  25 I Kelly  4 M Kokkoris  25 Y Kopatch  29 M Krtička  35 N Kyritsis  25 C Lederer-Woods  36 J Lerendegui-Marco  1 A Manna  16   37 T Martínez  3 M Martínez-Cañada  30 A Masi  2 C Massimi  16   37 P Mastinu  38 M Mastromarco  22   39 E A Maugeri  40 A Mazzone  22   41 E Mendoza  3 A Mengoni  15   16 V Michalopoulou  25 P M Milazzo  17 J Moldenhauer  4 R Mucciola  22 E Musacchio González  38 A Musumarra  42   43 A Negret  12 E Odusina  36 D Papanikolaou  42 N Patronis  2   27 J A Pavón-Rodríguez  9 M G Pellegriti  42 P Pérez-Maroto  9 A Pérez de Rada Fiol  3 G Perfetto  22 J Perkowski  31 C Petrone  12 N Pieretti  16   37 L Piersanti  23   24 E Pirovano  26 I Porras  30 J Praena  30 J M Quesada  9 R Reifarth  5 D Rochman  40 Y Romanets  44 A Rooney  36 G Rovira  45 C Rubbia  2 A Sánchez-Caballero  3 R N Sahoo  16 D Scarpa  38 P Schillebeeckx  34 A G Smith  8 N V Sosnin  8   36 M Spelta  17   18 M E Stamati  2   27 K Stasiak  31 G Tagliente  22 A Tarifeño-Saldivia  1 D Tarrío  46 P Torres-Sánchez  1 S Tosi  19 G Tsiledakis  10 S Valenta  35 P Vaz  44 G Vecchio  6 D Vescovi  23   24 V Vlachoudis  2 R Vlastou  25 A Wallner  11 C Weiss  32 P J Woods  36 T Wright  8 R Wu  28 P Žugec  13 The n_TOF Collaboration
Affiliations
Review

Neutron capture measurements for s-process nucleosynthesis: A review about CERN n_TOF developments and contributions

C Domingo-Pardo et al. Eur Phys J A Hadron Nucl. 2025.

Abstract

This article presents a review about the main CERN n_TOF contributions to the field of neutron-capture experiments of interest for s-process nucleosynthesis studies over the last 25 years, with a special focus on the measurement of radioactive isotopes. A few recent capture experiments on stable isotopes of astrophysical interest are also discussed. Results on s-process branching nuclei are appropriate to illustrate how advances in detection systems and upgrades in the facility have enabled increasingly challenging experiments and, as a consequence, have led to a better understanding and modeling of the s-process mechanism of nucleosynthesis. New endeavors combining radioactive-ion beams from ISOLDE for the production of radioisotopically pure samples for activation experiments at the new NEAR facility at n_TOF are briefly discussed. On the basis of these new exciting results, also current limitations of state-of-the-art TOF and activation techniques will be depicted, thereby showing the pressing need for further upgrades and enhancements on both facilities and detection systems. A brief account of the potential technique based on inverse kinematics for direct neutron-capture measurements is also presented.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
From left to right, the three generations of spallation sources at n_TOF. The latest version [24] delivers a superior neutron-beam quality for capture experiments at both measuring stations EAR1 (185 m) and EAR2 (20 m) [25]
Fig. 2
Fig. 2
Over the past two decades, advancements in facility upgrades (EAR1, EAR2, Target#1-3) and detection systems (C6D6, sTED, i-TED) at CERN n_TOF have enabled increasingly challenging experiments on s-process branching nuclei (horizontal axis). The figure of merit (FOM, vertical axis), defined in Eq. (1), provides a visual representation of this progress. For details on various s-process branching cross-section measurements, refer to the main text. Additional information on Target#1–3 can be found in Fig. 1, while details on detection systems are in Figs. 3 and 4. Abbreviations: temperature (T), Solar System (SS), Thermally-Pulsing Asymptotic Giant-Branch star (TP-AGB). Credits for figure insets: TP-AGB drawing adapted from [46]; Hubble-Space Telescope image of a TP-AGB (U. Camelopardalis) with a SiC grain (NASA/Nan Liu/Andrew Davis), massive-star illustration (NASA/CXC/M. Weiss)
Fig. 3
Fig. 3
Evolution of the capture set-up at EAR1, from left to right, two first-generation C-fiber based C6D6 detectors for the measurement of 151Sm(n,γ) [26], four Bicron C6D6 detectors with lead shields for the 204Tl(n,γ) experiment [63] and four latest-generation C-fiber C6D6 detectors [39] plus the i-TED Compton array [40] for the 79Se(n,γ) cross-section measurement [43]
Fig. 4
Fig. 4
Left: Conventional (large-volume) C6D6 detectors for capture measurements in EAR2. Notice that due to their large volume and the high neutron-flux the detectors had to be placed far from the sample in order to limit the count-rate per detector. Right: Upgraded setup with nine small volume C6D6 sTED detectors in a compact configuration surrounding the capture sample
Fig. 5
Fig. 5
Left: Part of the nuclear chart showing the s-process path at the branching in 79Se. The β-decay towards s-only 80Kr is strongly enhanced at higher stellar temperatures (red arrow) due to the population of the 1/2--isomeric state at low energy. Right: Effective half-life of 79Se as a function of stellar temperature. The inset indicates levels involved
Fig. 6
Fig. 6
Comparison of the capture yields measured at n_TOF EAR2 [115] for the first capture-resonance in 209Bi+n with a thick and a thin sample. The double-peak structure arises from enhanced multiple neutron-scattering effects inside the thick sample
Fig. 7
Fig. 7
R-matrix fit and its expected shape based on the ENDF/B-VIII.0 parameters of the first resonance in 30Si+n measured in EAR1
Fig. 8
Fig. 8
Drawings showing the location and different elements of the new NEAR station (left) and some quasi-Maxwellian neutron distributions obtained via MC-Simulation for different B4C- filter thicknesses, leading to mean kT values of about 1 keV and 35 keV

References

    1. E.M. Burbidge et al., Synthesis of the elements in stars. Rev. Mod. Phys. 29, 547–650 (1957)
    1. A.G.W. Cameron, On the origin of the heavy elements. Astron. J. 62, 9–10 (1957)
    1. R.L. Macklin et al., Neutron capture in tin isotopes at stellar temperatures. Nature 194(4835), 1272 (1962)
    1. R.L. Macklin et al., Neutron capture in the Samarium isotopes and the formation of the elements of the solar system. Nature 197(4865), 369–370 (1963)
    1. R.L. Macklin, J.H. Gibbons, Capture-cross-section studies for 30–220-keV neutrons using a new technique. Phys. Rev. 159, 1007–1012 (1967)

LinkOut - more resources