CRISPR-Based Regulation for High-Throughput Screening
- PMID: 40401794
- DOI: 10.1021/acssynbio.5c00076
CRISPR-Based Regulation for High-Throughput Screening
Abstract
CRISPR technology has revolutionized genome editing by enabling precise, permanent modifications to genetic material. To circumvent the irreversible alterations associated with traditional CRISPR methods and facilitate research on both essential and nonessential genes, CRISPR interference or inhibition (CRISPRi) and CRISPR activation (CRISPRa) were developed. The gene-silencing approach leverages an inactivated Cas effector protein paired with guide RNA to obstruct transcription initiation or elongation, while the gene-activation approach exploits the programmability of CRISPR to activate gene expression. Recent advances in CRISPRi technology, in combination with other technologies (e.g., biosensing, sequencing), have significantly expanded its applications, allowing for genome-wide high-throughput screening (HTS) to identify genetic determinants of phenotypes. These screening strategies have been applied in biomedicine, industry, and basic research. This review explores the CRISPR regulation mechanisms, offers an overview of the workflow for genome-wide CRISPR-based regulation for screens, and highlights its superior suitability for HTS across biomedical and industrial applications. Finally, we discuss the limitations of current CRISPRi/a HTS screening methods and envision future directions in CRISPR-mediated HTS research, considering its potential for broader application across diverse fields.
Keywords: Biosensor; CRISPR-Cas; CRISPRi; CRISPRi-seq; High-throughput screening.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources