Genome-scale metabolic network reconstruction analysis identifies bacterial vaginosis-associated metabolic interactions
- PMID: 40404632
- PMCID: PMC12098912
- DOI: 10.1038/s41467-025-59965-y
Genome-scale metabolic network reconstruction analysis identifies bacterial vaginosis-associated metabolic interactions
Abstract
Bacterial vaginosis (BV) is the most prevalent vaginal condition among reproductive-age women presenting with vaginal complaints. Despite its significant impact on women's health, limited knowledge exists regarding the microbial community composition and metabolic interactions associated with BV. In this study, we analyze metagenomic data obtained from human vaginal swabs to generate in silico predictions of BV-associated bacterial metabolic interactions via genome-scale metabolic network reconstructions (GENREs). While most efforts to characterize symptomatic BV (and thus guide therapeutic intervention by identifying responders and non-responders to treatment) are based on genomic profiling, our in silico simulations reveal functional metabolic relatedness between species as quite distinct from genetic relatedness. We grow several of the most common co-occurring bacteria (Prevotella amnii, Prevotella buccalis, Hoylesella timonensis, Lactobacillus iners, Fannyhessea vaginae, and Aerrococcus christenssii) on the spent media of Gardnerella species and perform metabolomics to identify potential mechanisms of metabolic interaction. Through these analyses, we identify BV-associated bacteria that produce caffeate, a compound implicated in estrogen receptor binding, when grown in the spent media of other BV-associated bacteria. These findings underscore the complex and diverse nature of BV-associated bacterial community structures and several of these mechanisms are of potential significance in understanding host-microbiome relationships.
© 2025. The Author(s).
Conflict of interest statement
Competing interests: Papin has financial stake in Cerillo, the manufacturer of the plate reader used in some experimental analyses. The initial clinical cohort was funded and conducted by Evvy. Thomas-White, Wever, Markowitz, and Lyttle are employed by Evvy, and Dillard received partial stipend support from Evvy. The remaining authors declare no competing interests.
Figures





References
-
- Wang, J. Bacterial vaginosis. Prim. Care Update OB/GYNS7, 181–185 (2000). - PubMed
MeSH terms
Grants and funding
- R01-AI154242/Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- R01-AT010253/Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- NRT-ROL 2021791/Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- 1 T 32 GM 145443-1/Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- 5T32GM136615-03/U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
LinkOut - more resources
Full Text Sources