Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 May 22;16(1):4773.
doi: 10.1038/s41467-025-59754-7.

Effect of climate on traits of dominant and rare tree species in the world's forests

Iris Hordijk  1   2 Lourens Poorter  3 Jingjing Liang  4 Peter B Reich  5   6 Sergio de-Miguel  7   8 Gert-Jan Nabuurs  3 Javier G P Gamarra  9 Han Y H Chen  10 Mo Zhou  4 Susan K Wiser  11 Hans Pretzsch  12 Alain Paquette  13 Nicolas Picard  14 Bruno Hérault  15   16 Jean-Francois Bastin  17 Giorgio Alberti  18   19 Meinrad Abegg  20 Yves C Adou Yao  21 Angelica M Almeyda Zambrano  22 Braulio V Alvarado  23 Esteban Alvarez-Davila  24 Patricia Alvarez-Loayza  25 Luciana F Alves  26 Iêda Amaral  27 Christian Ammer  28 Clara Antón-Fernández  29 Alejandro Araujo-Murakami  30 Luzmila Arroyo  30 Valerio Avitabile  31 Gerardo A Aymard C  32   33 Timothy Baker  34 Olaf Banki  35 Jorcely Barroso  36 Meredith L Bastian  37   38 Luca Birigazzi  39 Philippe Birnbaum  40 Robert Bitariho  41 Pascal Boeckx  42 Frans Bongers  3 Olivier Bouriaud  43 Pedro H S Brancalion  44 Susanne Brandl  45 Francis Q Brearley  46 Roel Brienen  34 Eben N Broadbent  47 Helge Bruelheide  48   49 Roberto Cazzolla Gatti  50 Ricardo G Cesar  44 Goran Cesljar  51 Robin L Chazdon  52   53 Chelsea Chisholm  54 Emil Cienciala  55   56 Connie J Clark  57 David B Clark  58 Gabriel Colletta  59 David Coomes  60 Fernando Cornejo Valverde  61 Jose J Corral-Rivas  62 Philip Crim  63   64 Jonathan Cumming  64 Selvadurai Dayanandan  65 André L de Gasper  66 Mathieu Decuyper  3 Géraldine Derroire  67 Ben DeVries  68 Ilija Djordjevic  69 Aurélie Dourdain  67 Jiri Dolezal  70   71 Nestor Laurier Engone Obiang  72 Brian Enquist  73   74 Teresa Eyre  75 Adandé Belarmain Fandohan  76 Tom M Fayle  77   78   79 Leandro V Ferreira  80 Ted R Feldpausch  81 Leena Finér  82 Markus Fischer  83 Christine Fletcher  84 Lorenzo Frizzera  85 Damiano Gianelle  85 Henry B Glick  86 David Harris  87 Andrew Hector  88 Andreas Hemp  89 John Herbohn  53 Annika Hillers  90   91 Eurídice N Honorio Coronado  92 Cang Hui  93   94 Hyunkook Cho  95 Thomas Ibanez  40 Ilbin Jung  95 Nobuo Imai  96 Andrzej M Jagodzinski  97   98 Bogdan Jaroszewicz  99 Vivian Johannsen  100 Carlos A Joly  101 Tommaso Jucker  102 Viktor Karminov  103 Kuswata Kartawinata  25 Elizabeth Kearsley  104 David Kenfack  105 Deborah Kennard  106 Sebastian Kepfer-Rojas  100 Gunnar Keppel  107 Mohammed Latif Khan  108 Timothy Killeen  30 Hyun Seok Kim  109   110   111   112 Kanehiro Kitayama  113 Michael Köhl  114 Henn Korjus  115 Florian Kraxner  116 Diana Laarmann  115 Mait Lang  115 Simon Lewis  34   117 Huicui Lu  118 Natalia Lukina  119 Brian Maitner  74 Yadvinder Malhi  120 Eric Marcon  121 Beatriz Schwantes Marimon  122 Ben Hur Marimon-Junior  122 Andrew Robert Marshall  53   123   124 Emanuel Martin  125 Olga Martynenko  126 Jorge A Meave  127 Omar Melo-Cruz  128 Casimiro Mendoza  129 Cory Merow  52 Stanislaw Miscicki  130 Abel Monteagudo Mendoza  131   132 Vanessa Moreno  44 Sharif A Mukul  53   133 Philip Mundhenk  114 Maria G Nava-Miranda  134   135 David Neill  136 Victor Neldner  75 Radovan Nevenic  69 Michael Ngugi  75 Pascal A Niklaus  137 Jacek Oleksyn  97 Petr Ontikov  103 Edgar Ortiz-Malavasi  23 Yude Pan  138 Alexander Parada-Gutierrez  30 Elena Parfenova  139 Minjee Park  4   109 Marc Parren  140 Narayanaswamy Parthasarathy  141 Pablo L Peri  142 Sebastian Pfautsch  143 Oliver L Phillips  34 Maria Teresa Piedade  144 Daniel Piotto  145 Nigel C A Pitman  25 Martina Pollastrini  146 Irina Polo  147 Axel Dalberg Poulsen  87 John R Poulsen  57 Freddy Ramirez Arevalo  148 Zorayda Restrepo-Correa  149 Mirco Rodeghiero  150 Samir Rolim  145 Anand Roopsind  151 Francesco Rovero  152   153 Ervan Rutishauser  154 Purabi Saikia  155 Christian Salas-Eljatib  156   157   158 Peter Schall  28 Dmitry Schepaschenko  116 Michael Scherer-Lorenzen  159 Bernhard Schmid  137 Jochen Schöngart  144 Eric B Searle  13 Vladimír Seben  160 Federico Selvi  146 Josep M Serra-Diaz  161   162 Douglas Sheil  3   163 Anatoly Shvidenko  116 Javier Silva-Espejo  164 Marcos Silveira  165 James Singh  166 Plinio Sist  15 Ferry Slik  167 Bonaventure Sonké  168 Alexandre F Souza  169 Hans Ter Steege  35   170 Krzysztof Stereńczak  171 Jens-Christian Svenning  162   172 Miroslav Svoboda  173 Ben Swanepoel  174 Natalia Targhetta  144 Nadja Tchebakova  139 Raquel Thomas  175 Elena Tikhonova  120 Peter Umunay  86 Vladimir Usoltsev  176 Renato Valencia  177 Fernando Valladares  178 Fons van der Plas  179 Tran Van Do  180 Michael E Van Nuland  181 Rodolfo Vasquez Martinez  130 Hans Verbeeck  104 Helder Viana  182   183 Alexander C Vibrans  56   184 Simone Vieira  185 Klaus von Gadow  186 Hua-Feng Wang  187 James Watson  188 Gijsbert D A Werner  189 Florian Wittmann  190 Verginia Wortel  191 Roderick Zagt  192 Tomasz Zawila-Niedzwiecki  193 Chunyu Zhang  194 Xiuhai Zhao  194 Zhi-Xin Zhu  187 Irie Casimir Zo-Bi  195 Daniel S Maynard  54   196 Thomas W Crowther  54
Affiliations

Effect of climate on traits of dominant and rare tree species in the world's forests

Iris Hordijk et al. Nat Commun. .

Abstract

Species' traits and environmental conditions determine the abundance of tree species across the globe. The extent to which traits of dominant and rare tree species differ remains untested across a broad environmental range, limiting our understanding of how species traits and the environment shape forest functional composition. We use a global dataset of tree composition of >22,000 forest plots and 11 traits of 1663 tree species to ask how locally dominant and rare species differ in their trait values, and how these differences are driven by climatic gradients in temperature and water availability in forest biomes across the globe. We find three consistent trait differences between locally dominant and rare species across all biomes; dominant species are taller, have softer wood and higher loading on the multivariate stem strategy axis (related to narrow tracheids and thick bark). The difference between traits of dominant and rare species is more strongly driven by temperature compared to water availability, as temperature might affect a larger number of traits. Therefore, climate change driven global temperature rise may have a strong effect on trait differences between dominant and rare tree species and may lead to changes in species abundances and therefore strong community reassembly.

PubMed Disclaimer

Conflict of interest statement

Competing interests: The authors declare no competing interests.

Figures

Fig. 1
Fig. 1. The six forest biomes, with the number of plots, mean annual temperature and mean water availability index displayed.
The three most common dominant and randomly chosen rare tree species, according to our dataset, are indicated per forest biome. An overview of the temperature and water availability range per biome can be found in Fig. S5.
Fig. 2
Fig. 2. A PCA visualizing 10 traits of dominant tree species (circles) and rare tree species (triangles).
The dominant and rare species per plot are visualised in this graph, and the circles and triangles represent therefore individual trees. The climatic variables temperature (purple arrow) and water availability (brown arrow), and gymnosperms (green arow) are as well indicated with an arrow. The six different forest biomes are visualized with different colours, see the legend for the colour explanation. The cluster on the left is dominated by angiosperms, while the cluster on the right is dominated by gymnosperms. For the same graph on species level, see Fig. S3A. Source data are provided as a Source Data file.
Fig. 3
Fig. 3. The difference between standardized trait values of dominant and rare tree species per forest biome.
Ten traits, percentage gymnosperms and the first two PC axes are evaluated, of which five traits and PC1 are visualized here (see for the other traits and PC2 Fig. S6). The mean and confidence interval of the difference between trait values of dominant and rare species are displayed. If the mean is positive, dominant species have on average a higher trait value, while a negative mean indicates that rare species have a higher trait value. The grey dashed line indicates similar trait values between dominant and rare species. Closed dots indicate a significant difference between trait values of dominant and rare species (Wilcoxon test, N > 1015, p < 0.05). Detailed statistics per biome can be found in Table S1. Source data are provided as a Source Data file.
Fig. 4
Fig. 4. The difference between five dominant and rare trait values and PC1 at the y-axis plotted against, respectively, mean annual temperature (left) and water availability (right).
See for the other traits and PC2 Fig. S7. Positive values indicate that trait values are higher for dominant species, while negative values indicate that trait values are higher for rare species. The graphs on temperature are modelled with a second-order polynomial function, the graphs on availability index are modelled with a linear function as this best fitted the data (See Supplementary Data 1). The standardized regression coefficients of the linear models are displayed of the climatic variables (t = temperature, w = water availability index) and squared climatic variables (t2 = temperature2, w2 = water availability index2). The number of plots included in this analysis is 22,825. The significance of the regression coefficients is indicated with asterisks: *p < 0.05, **p < 0.01, ***p < 0.001. Source data is provided as a Source Data file.

References

    1. Fauset, S. et al. Hyperdominance in Amazonian forest carbon cycling. Nat. Commun.6, 1–9 (2015). - PMC - PubMed
    1. Grime, J. P. Benefits of plant diversity to ecosystems: immediate, filter and founder effects. J. Ecol.86, 902–910 (1998).
    1. Jain, M. et al. The importance of rare species: A trait-based assessment of rare species contributions to functional diversity and possible ecosystem function in tall-grass prairies. Ecol. Evol. 4, 104–112 (2014). - PMC - PubMed
    1. Mouillot, D. et al. Rare species support vulnerable functions in high-diversity ecosystems. Mace G. M., editor. PLoS Biol. 11, e1001569 (2013). - PMC - PubMed
    1. HilleRisLambers, J., Adler, P. B., Harpole, W. S., Levine, J. M. & Mayfield, M. M. Rethinking community assembly through the lens of coexistence theory. Annu. Rev. Ecol. Evol. Syst.43, 227–248 (2012).