Mechano-immunomodulation of macrophages influences the regenerative environment of fracture healing through the regulation of angiogenesis and osteogenesis
- PMID: 40409508
- DOI: 10.1016/j.actbio.2025.05.045
Mechano-immunomodulation of macrophages influences the regenerative environment of fracture healing through the regulation of angiogenesis and osteogenesis
Abstract
Successful completion of the initial inflammatory phase is critical for the establishment of a regenerative environment conducive to long-term fracture healing. Mechanical signals are among the most potent regulators of bone repair, yet whether local mechanics can modulate inflammation and associated immune response remains poorly understood. In this study, we develop a 3D in vitro model comprising of a purpose-built bioreactor that can replicate distinct loading conditions experienced during ambulation of fixated or unfixed large bone defects, and a haematoma mimetic fibrin hydrogel mirroring the local tissue composition, mechanical properties, and immune environment. Harnessing this system, we demonstrated that macrophages, key regulators of the early immune response, are mechanoresponsive and sensitive to the loading magnitude of local compressive forces. Specifically, moderate loading (5 % strain) as experienced within semi-rigid fixation, was capable of driving a hybrid phenotype with a higher regenerative secretome in M0 macrophages, while inhibiting inflammation in pro-inflammatory M1-like macrophages which supported capillary-size vascular formation. Conversely, higher loading (35 % strain), representative of mechanically unstable defects, was shown to elicit a poor regenerative immune response detrimental to vascular growth and long-term mineralisation. Collectively, our findings highlight mechanical cues as potent stimuli to modulate early immune responses, thus informing the development of novel materials and mechanotherapies to enhance bone repair. STATEMENT OF SIGNIFICANCE: Mechano-immunology is an emerging field that aims at interrogating how mechanical cues shape immune cell phenotype and function. This study presents for the first time, the design and validation of a purpose-built 3D in vitro platform of a dynamically loaded bone fracture haematoma. Utilising this model, we demonstrate that macrophages are mechanoresponsive and sensitive to compressive loading magnitude, with moderate loading (5 % strain) producing a hybrid regenerative macrophage phenotype and secretome, while excessive loading (35 % strain) produced a secretome detrimental to angiogenesis and osteogenesis. Moreover, moderate strain can also dampen inflammation in a model of an inflamed compromised fracture. This knowledge may inform the development of novel mechano-immunomodulatory materials and therapeutics that target the early inflammation phase for bone repair.
Keywords: Bone; Dynamic compressive loading; Fracture healing; Haematoma; Inflammation; Macrophage polarisation; Mechanobiology.
Copyright © 2025 The Authors. Published by Elsevier Inc. All rights reserved.
Conflict of interest statement
Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Similar articles
-
Negative pressure wound therapy for surgical wounds healing by primary closure.Cochrane Database Syst Rev. 2022 Apr 26;4(4):CD009261. doi: 10.1002/14651858.CD009261.pub7. Cochrane Database Syst Rev. 2022. PMID: 35471497 Free PMC article.
-
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.Cochrane Database Syst Rev. 2022 May 20;5(5):CD013665. doi: 10.1002/14651858.CD013665.pub3. Cochrane Database Syst Rev. 2022. PMID: 35593186 Free PMC article.
-
Salmonella exploits host- and bacterial-derived β-alanine for replication inside host macrophages.Elife. 2025 Jun 19;13:RP103714. doi: 10.7554/eLife.103714. Elife. 2025. PMID: 40536105 Free PMC article.
-
Inflammatory Licensed hMSCs Exhibit Enhanced Immunomodulatory Capacity in a Biomaterial Mediated Manner.ACS Biomater Sci Eng. 2023 Aug 14;9(8):4916-4928. doi: 10.1021/acsbiomaterials.3c00290. Epub 2023 Jun 30. ACS Biomater Sci Eng. 2023. PMID: 37390452 Free PMC article.
-
EORTC guidelines for the use of erythropoietic proteins in anaemic patients with cancer: 2006 update.Eur J Cancer. 2007 Jan;43(2):258-70. doi: 10.1016/j.ejca.2006.10.014. Epub 2006 Dec 19. Eur J Cancer. 2007. PMID: 17182241
MeSH terms
LinkOut - more resources
Full Text Sources
Research Materials