Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Aug:257:110452.
doi: 10.1016/j.exer.2025.110452. Epub 2025 May 23.

Lycium barbarum glycopeptide alleviates retinal inflammation by suppressing microglial M1 polarization via NF-κB/MAPK pathways

Affiliations
Free article

Lycium barbarum glycopeptide alleviates retinal inflammation by suppressing microglial M1 polarization via NF-κB/MAPK pathways

Yiwen Ou et al. Exp Eye Res. 2025 Aug.
Free article

Abstract

Lycium barbarum glycopeptide (LBGP) is a known glycoconjugate with various pharmacological benefits, notably anti-inflammatory properties, though its impact on retinal inflammatory conditions is not fully understood. This research evaluated the impact of LBGP on retinal inflammation using a diabetic retinopathy (DR) mouse model induced by streptozotocin (STZ), along with LPS/IFN-γ (L/I)-stimulated BV2 microglia and primary retinal microglia. In vivo, administration of LBGP effectively enhances retinal thickness, structure, and function in diabetic mice. Additionally, it prevents microglial activation and inflammation. In vitro, LBGP pretreatment significantly reversed L/I-induced morphological alterations in microglial area, perimeter, Feret's diameter, and roundness. LBGP significantly alleviated L/I-induced microglial activation in primary and BV2 microglia. LBGP shifted M1 pro-inflammatory phenotype to M2 anti-inflammatory phenotype by downregulating M1 markers (IL-6, IL-1β, iNOS, COX2, CD86, and CD16) and upregulating M2 markers (CD206 and arginase 1). Additionally, LBGP reduced the upregulation of NF-κB and MAPK pathways in L/I-stimulated BV2 microglial cells. Our study suggests that LBGP protects against microglial overactivation and diminishes the secretion of inflammatory molecules from microglia in vivo and vitro, potentially through attenuation of the NF-κB and MAPK signaling pathways.

Keywords: DR; LBGP; MAPK; Microglia; NF-κB; Polarization; Retinal inflammatory diseases.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

MeSH terms

LinkOut - more resources