Structure of metal-nucleotide complexes bound to creatine kinase: 31P NMR measurements using Mn(II) and Co(II)
- PMID: 4041424
- DOI: 10.1021/bi00335a015
Structure of metal-nucleotide complexes bound to creatine kinase: 31P NMR measurements using Mn(II) and Co(II)
Abstract
The structures of metal-nucleotide complexes bound to rabbit muscle creatine kinase have been studied by making measurements of paramagnetic effects of two dissimilar activating paramagnetic cations, Mn(II) and Co(II), on the spin-relaxation rates of the 31P nuclei of ATP and ADP in these complexes. The experiments were performed on enzyme-bound complexes, thereby limiting the contributions to the observed relaxation rate to two exchanging complexes (with and without the cation). Measurements were made as a function of temperature in the range 5-35 degrees C and at three 31P NMR frequencies, 81, 121.5, and 190.2 MHz, in order to determine the effect of exchange on the observed relaxation rates. The relaxation rates in E X MnADP and E X MnATP are independent of frequency, and their temperature variation yields activation energies (delta E) in the range 5-8 kcal/mol; in the transition-state analogue complex E X MnADP X NO3- X Cre (Cre is creatine), delta E is increased to 17.3 kcal/mol. These results demonstrate that the relaxation rates in the Mn(II) complexes are exchange limited and are incapable of providing structural data. It is shown further that use of line-width measurements to estimate the lifetime of the paramagnetic complex leads to incorrect results. The relaxation rates in E X CoADP and E X CoATP exhibit frequency dependence and delta E values in the range 1-3 kcal/mol; i.e., these rates depend on the Co(II)-31P distances, whereas those in the E X CoADP X NO3- X Cre complex have delta E approximately 18 kcal/mol and are significantly contributed by exchange.(ABSTRACT TRUNCATED AT 250 WORDS)