Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Oct 16;6(4):296-304.
doi: 10.24875/RECIC.M24000475. eCollection 2024 Oct-Dec.

[Management of collaterals after Glenn procedure and its impact on patients with a single ventricle: a single-center study]

[Article in Spanish]
Affiliations

[Management of collaterals after Glenn procedure and its impact on patients with a single ventricle: a single-center study]

[Article in Spanish]
Yasmin Abdelrazek Ali et al. REC Interv Cardiol. .

Abstract

Introduction and objectives:: The bidirectional Glenn shunt (BDG) is an essential step in the repair of a physiologically single-ventricle heart. BDG increases pulmonary blood flow, allows growth of the pulmonary arteries, and improves SaO2. The procedure also allows unloading of ventricular volume, thereby improving survival. Our aim was to register all patients who developed collaterals following BDG, document the management methods used, and assess their impact.

Methods:: We included 56 patients who underwent BDG procedures at a median age of 2.08 (1-3) years. After BDG, peripheral pulmonary stenting was used in 2 patients. Symptomatic hyperviscosity was present in 10 patients (17.86%), who underwent venesection. BDG was unsuccessful in 2 patients. Venovenous collaterals were observed in 41 patients (73.2%), and aortopulmonary collaterals in 37 (66.1%).

Results:: Hematocrit levels were significantly higher in patients with venovenous collaterals (50.00 ± 8.76) than in those without (P = .031). Mean pulmonary artery pressure was also significantly higher in patients with venovenous collaterals (15 [12-18] mmHg; P = .025). One patient had undergone successful closure of venovenous collaterals to epicardial veins and abdominal veins 3 years previously. Seven patients underwent transcatheter closure (TCC) of collaterals. Of these, 4 patients underwent TCC of venovenous collaterals to left and right pulmonary veins; 1 patient underwent closure of an aortopulmonary collateral; 1 patient underwent a failed attempt at venovenous collateral closure that was complicated by an ischemic stroke; and 1 patient had localized extravasation upon separation of the cable. A highly statistically significant increase in SaO2 was observed after TCC of venovenous collaterals (69.83 ± 10.91 vs 82.83 ± 9.87; P = .008).

Conclusions:: TCC of collaterals is a technically demanding but effective management strategy following BDG to improve patients’ SaO2 and quality of life. Awareness of possible complications and their effective management is crucial.

Keywords: Aortopulmonary collaterals; Coil embolization; Device embolization; Pulmonary vein; Transcatheter closure; Venovenous.

PubMed Disclaimer

Conflict of interest statement

CONFLICTO DE INTERESES: Ninguno.

Figures

Figure 1
Figure 1. Aortography in lateral and right anterior oblique cranial views showing 2 major aortopulmonary collateral arteries, one from the right internal mammary artery and the other from the posterior part of aortic arch filling both pulmonary arteries. A, B, successful transcatheter closure of aortopulmonary collaterals. C, D, E, closure of aortopulmonary collaterals by 3 coils. F, final injection after aortopulmonary collateral coil closure.
Figure 2
Figure 2. Successful transcatheter closure of venovenous collaterals. A, venovenous collaterals draining into right and left upper pulmonary veins. B, coil closure of the proximal part of the collaterals. C, D, result after transcatheter closure of venovenous collateral by the coil shows residual sluggish flow to collaterals.
Figure 3
Figure 3. Successful transcatheter closure of a venovenous collateral. A, Glenn shunt and venovenous collateral to the left upper pulmonary vein. B, transcatheter closure of the venovenous collateral by 2 coils. C, final injection after closure of the venovenous collateral with significantly diminished flow to the left upper pulmonary vein.
Figure 4
Figure 4. Venovenous collateral angiography in posteroanterior view. A, well-seated Amplatzer Duct Occluder II in venovenous collateral. B, extravasation at the proximal origin of collateral after cable separation. C, injection after several minutes showing sealing of extravasation.
Figura 1
Figura 1. Aortografía en planos craneales lateral y oblicuo anterior derecho muestra 2 arterias colaterales aortopulmonares mayores, una proveniente de la arteria mamaria interna derecha y la otra de la región posterior del arco aórtico con llenado de las 2 arterias pulmonares. A, B: cierre percutáneo exitoso de las colaterales aortopulmonares. C, D, E: cierre de las colaterales aortopulmonares mediante el uso de 3 coils. F: inyección final tras el cierre de las colaterales aortopulmonares con coils.
Figura 2
Figura 2. Cierre percutáneo exitoso de colaterales venovenosas. A: colaterales venovenosas drenando en las venas pulmonares superiores derecha e izquierda. B: cierre de la región proximal de las colaterales con coils. C, D: resultado tras el cierre percutáneo de las colaterales venovenosas con coils con flujo residual lento hacia las colaterales.
Figura 3
Figura 3. Cierre percutáneo exitoso de una colateral venovenosa. A: derivación de Glenn y colateral venovenosa hacia la vena pulmonar superior izquierda. B: cierre percutáneo de la colateral venovenosa con 2 coils. C: inyección final tras el cierre de la colateral venovenosa con un flujo muy reducido hacia la vena pulmonar superior izquierda.
Figura 4
Figura 4. Angiografía de colateral venovenosa en plano posteroanterior. A: Amplatzer Duct Occluder II bien colocado en la colateral venovenosa. B: extravasación en el origen proximal de la colateral tras separación del cable. C: inyección tras varios minutos que muestra el sellado de la extravasación.

References

    1. Liu S, Joseph KS, Lisonkova S, et al. Association between maternal chronic conditions and congenital heart defects:a population-based cohort study. Circulation. 2013;128:583-589. - PubMed
    2. Liu S, Joseph KS, Lisonkova S, et al. Association between maternal chronic conditions and congenital heart defects:a population-based cohort study. Circulation. 2013;128:583–589. - PubMed
    1. Mocumbi AO, Lameira E, Yaksh A, et al. Challenges on the management of congenital heart disease in developing countries. Int J Cardiol. 2011;148:285-288. - PubMed
    2. Mocumbi AO, Lameira E, Yaksh A, et al. Challenges on the management of congenital heart disease in developing countries. Int J Cardiol. 2011;148:285–288. - PubMed
    1. Rao PS. Single ventricle A comprehensive review. Children. 2021;8:441. - PMC - PubMed
    2. Rao PS. Single ventricle A comprehensive review. Children. 2021;8:441. - PMC - PubMed
    1. Salik I, Mehta B, Ambati S. Bidirectional Glenn procedure or hemi-Fontan [Internet], Treasure Island (FL):StatPearls Publishing;2022. Disponible en:https://www.ncbi.nlm.nih.gov/books/NBK563299/. Consultado 17 Jun 2024. - PubMed
    2. Salik I, Mehta B, Ambati S. Bidirectional Glenn procedure or hemi-Fontan [Internet] Treasure Island (FL): StatPearls Publishing; 2022. Disponible en: https://www.ncbi.nlm.nih.gov/books/NBK563299/ Consultado 17 Jun 2024. - PubMed
    1. Dilawar M, Gottliebson WM, Bradley SM, et al. Rapid development of a large systemic-to-pulmonary vein fistula after bidirectional Glenn shunt and successful closure with an Amplatzer duct occluder. Circulation. 2001;104:E41-E42. - PubMed
    2. Dilawar M, Gottliebson WM, Bradley SM, et al. Rapid development of a large systemic-to-pulmonary vein fistula after bidirectional Glenn shunt and successful closure with an Amplatzer duct occluder. Circulation. 2001;104:E41. - PubMed

Publication types

LinkOut - more resources