A genome-wide approach for the discovery of novel repeat expansion disorders in the Undiagnosed Diseases Network cohort
- PMID: 40417743
- PMCID: PMC12318663
- DOI: 10.1016/j.gim.2025.101462
A genome-wide approach for the discovery of novel repeat expansion disorders in the Undiagnosed Diseases Network cohort
Abstract
Purpose: The Undiagnosed Diseases Network is a National Institutes of Health funded research study that aims to solve a broad clinical spectrum of challenging rare disease cases. Participants receive care from multiple clinical specialists, who collaborate to perform deep phenotyping and state-of-the-art multiomics analyses. As bioinformatics of short-read sequencing has matured, the discovery of repeat expansion disorders (REDs) is accelerating. REDs comprise approximately 60 characterized disorders, which exhibit a broad spectrum of phenotypes. Thus, a largely unbiased genome-wide approach in a phenotypically diverse sample will add to the diagnostic depth, explore the limits of short-read genome analysis, and establish novel candidate RED loci.
Methods: Here, we present a genome-wide analysis of repeat expansions conducted on 1018 genomes from the Undiagnosed Diseases Network. By leveraging 2 distinct bioinformatics tools, ExpansionHunter Denovo and STRling, we showed that repeat expansions can be accurately detected in short-read genomes.
Results: We demonstrated that a genotype-first approach can diagnose atypical cases of known REDs and provide valuable clinical insights. We present clinical details on participants with expansions in ATXN7, DMPK, FMR1, GLS, HTT, RFC1, AFF3, and MARCH6. Importantly, we highlight 2 cases of juvenile Huntington disease that were discovered through our analysis. Finally, we present a list of novel candidate short tandem repeats (TR) that could potentially be pathogenic if expanded.
Conclusion: Importantly, our approach showcases the bioinformatic advancements in genome analysis for RED detection and highlights its practical applications.
Keywords: Bioinformatics; Rare disease; Rare diseases; Short tandem repeats; Tandem repeat expansion disorders.
Copyright © 2025 American College of Medical Genetics and Genomics. Published by Elsevier Inc. All rights reserved.
Conflict of interest statement
Conflict of Interest The authors declare no conflicts of interest.
References
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
Research Materials
Miscellaneous