Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1985 Sep 2;342(1):45-53.
doi: 10.1016/0006-8993(85)91351-4.

The vasopressin and oxytocin neurons in the human supraoptic and paraventricular nucleus; changes with aging and in senile dementia

Comparative Study

The vasopressin and oxytocin neurons in the human supraoptic and paraventricular nucleus; changes with aging and in senile dementia

E Fliers et al. Brain Res. .

Abstract

The neuropeptides vasopressin (AVP) and oxytocin (OXT) are supposed to be involved not only in peripheral functions (e.g. diuresis, labour and lactation) but also in central processes that are frequently disturbed during aging and senile dementia (e.g. fluid and electrolyte homeostasis and cognitive functions). A concomitant decrease in activity of the hypothalamo-neurohypophyseal system (HNS) with aging has been postulated in the literature, but has not yet been established. In order to investigate possible age-related changes in the human HNS, immunocytochemically identified AVP and OXT neurons in the paraventricular and supraoptic nucleus (PVN and SON) were analysed morphometrically in subjects from 10 to 93 years of age, including patients with senile dementia of the Alzheimer type (SDAT). Cell size was used as a parameter for peptide production. Mean profile area of OXT cells did not show any significant changes with increasing age. Mean profile area of AVP cells, however, showed an initial decrease up to the sixth decade of life, after which a gradual increase was observed. Size of AVP and OXT cell nuclei did not change significantly with aging. Observations in brains from patients with SDAT were within the range for their age group. The present results do not support degeneration or diminished function of the HNS in senescence or SDAT, as generally presumed in the literature, but suggest an activation of AVP cells after 80 years of age. The activation of AVP cells in senescence is in accordance with previous findings in the aged Wistar rat.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources