CDC34 suppresses macrophage phagocytic activity and predicts poor response to immune checkpoint inhibitor in cancers
- PMID: 40419082
- DOI: 10.1016/j.canlet.2025.217822
CDC34 suppresses macrophage phagocytic activity and predicts poor response to immune checkpoint inhibitor in cancers
Abstract
The Cell Division Cycle 34 (CDC34) is an E2 ubiquitin-conjugating enzyme that is required for proteasomal degradation of substrate proteins, and is able to stabilize proteins including the epidermal growth factor receptor to promote lung carcinogenesis. Here, we conducted a pan-cancer analysis of CDC34 in The Cancer Genome Atlas datasets, and found its high expression in breast cancer and negative association with patient outcomes. Analysis of single-cell RNA-sequencing data revealed a negative role of CDC34 in macrophage phagocytotic activity for cancer cells. CDC34 stabilized hypoxia-inducible factor 1α (HIF1α) and transcriptionally upregulated CD47 in cancer cells to evade phagocytosis by macrophages. Inhibition of CDC34 inhibited tumor growth and synergized with anti-PD-L1 antibody in murine models. CDC34 was positively associated with CD47 and negatively associated with CD8+ granzyme B+ T-cell infiltration in patient samples, and patients with co-overexpression of CDC34 and CD47 had markedly poorer prognosis compared to those with high expression of either marker alone. In pre-treatment tumor samples, non-responders to immunotherapy exhibited significantly higher CDC34 levels and reduced CD8+ T-cell infiltration compared to responders. These findings indicated that CDC34 is critical to immune evasion and could be a potential therapeutic target for those resistant to immune checkpoint inhibitors.
Keywords: Breast cancer; CD47; CDC34; HIF1α; Immune evasion.
Copyright © 2025. Published by Elsevier B.V.
Conflict of interest statement
Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
Research Materials