Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1985 Jun;63(6):669-74.
doi: 10.1139/y85-111.

Force-velocity relationships in hypertensive arterial smooth muscle

Force-velocity relationships in hypertensive arterial smooth muscle

C S Packer et al. Can J Physiol Pharmacol. 1985 Jun.

Abstract

Increased total peripheral resistance is the cardinal haemodynamic disorder in essential hypertension. This could be secondary to alterations in the mechanical properties of vascular smooth muscle. Adequate study has not been made of the force-velocity (F-V) relationship in hypertensive arterial smooth muscle. Increased shortening in arterial smooth muscle would result in greater narrowing of arteries. The objectives of this investigation were to see if there is (i) increased shortening or increased maximum change in muscle length (delta Lmax where L stands for muscle length), (ii) an increased maximum velocity of shortening (Vmax) measured in l omicron per second where l omicron is the optimal muscle length for tension development, and (iii) a difference in maximum isometric tension (P omicron) developed in spontaneously hypertensive rat (SHR; N = 6) compared with normotensive Wistar Kyoto rat (WKY;N = 5) caudal artery strips. An electromagnetic muscle lever was employed in recording force-velocity data. Analysis of these data revealed the following: (a) the SHR mean P omicron of 6.21 +/- 1.01 N/cm2 was not different from the mean WKY P omicron of 6.97 +/- 1.64 N/cm2 (p greater than 0.05); (b) the SHR preparations showed greater shortening for all loads imposed; (c) the SHR Vmax of 0.016 l omicron/s was greater than the WKY Vmax of 0.013 l omicron/s (p less than 0.05). This study provides evidence that while hypertensive arterial smooth muscle is not able to produce more force than normotensive arterial smooth muscle, it is capable of faster and greater shortening. The latter could result in increased narrowing of hypertensive arteries and increased blood pressure.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources