Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1985 Jul;63(7):787-97.
doi: 10.1139/y85-131.

Effects of coronary sinus pressure elevation on coronary blood flow distribution in dogs with normal preload

Effects of coronary sinus pressure elevation on coronary blood flow distribution in dogs with normal preload

J R Rouleau et al. Can J Physiol Pharmacol. 1985 Jul.

Abstract

Coronary sinus pressure (Pcs) elevation shifts the diastolic coronary pressure-flow relation (PFR) of the entire left ventricular myocardium to a higher pressure intercept. This finding suggests that Pcs is one determinant of zero-flow pressure (Pzf) and challenges the existence of a vascular waterfall mechanism in the coronary circulation. To determine whether coronary sinus or tissue pressure is the effective coronary back pressure in different layers of the left ventricular myocardium, the effect of increasing Pcs was studied while left ventricular preload was low. PFRs were determined experimentally by graded constriction of the circumflex coronary artery while measuring flow using a flowmeter. Transmural myocardial blood flow distribution was studied (15-micron radioactive spheres) at steady state, during maximal coronary artery vasodilatation at three points on the linear portion of the circumflex PFR both at low and high diastolic Pcs (7 +/- 3 vs. 22 +/- 5 mmHg; p less than 0.0001) (1 mmHg = 133.322 Pa). In the uninstrumented anterior wall the blood flow measurements were obtained in triplicate at the two Pcs levels. From low to high Pcs, mean aortic (98 +/- 23 mmHg) and left atrial (5 +/- 3 mmHg) pressure, percent diastolic time (49 +/- 7%), percent left ventricular wall thickening (32 +/- 4%), and percent myocardial lactate extraction (15 +/- 12%) were not significantly changed. Increasing Pcs did not alter the slope of the PFR; however, the Pzf increased in the subepicardial layer (p less than 0.0001), whereas in the subendocardial layer Pzf did not change significantly. Similar slopes and Pzf were observed for the PFR of both total myocardial mass and subepicardial region at low and high Pcs. Subendocardial:subepicardial blood flow ratios increased for each set of measurements when Pcs was elevated (p less than 0.0001), owing to a reduction of subepicardial blood flow; however, subendocardial blood flow remained unchanged, while starting in the subepicardium toward midmyocardium blood flow decreased at high Pcs. This pattern was similar for the uninstrumented anterior wall as well as in the posterior wall. Thus as Pcs increases it becomes the effective coronary back pressure with decreasing magnitude from the subepicardium toward the subendocardium of the left ventricle. Assuming that elevating Pcs results in transmural elevation in coronary venous pressure, these findings support the hypothesis of a differential intramyocardial waterfall mechanism with greater subendo- than subepi-cardial tissue pressure.

PubMed Disclaimer

Similar articles

Cited by

Publication types

Substances

LinkOut - more resources