Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1977 Apr;91(1):31-7.
doi: 10.1002/jcp.1040910104.

Cell density-dependent secretion of plasminogen activator by 3T3 cells

Comparative Study

Cell density-dependent secretion of plasminogen activator by 3T3 cells

I N Chou et al. J Cell Physiol. 1977 Apr.

Abstract

The expression of extracellular fibrinolytic activity in untransformed 3T3 cell cultures depends on the growth state of the cells. Actively growing 3T3 cultures exhibit a relatively high level of fibrinolysis, which decreases progressively as the cells become confluent and density-inhibited. The low level of fibrinolytic activity in confluent 3T3 cultures is due to a diminution in secretion of plasminogen activator since the intracellular level of plasminogen activator remains high. The amount of plasminogen activator observed in growing 3T3 cultures varies depending upon whether the cells are passaged with trypsin/EDTA solution, or with Ca++ selective chelating agent, ethylene-bis (oxyethylenenitrilo) tetraacetic acid (EGTA). However, in cells passaged using either agent, the amount of plasminogen activator secreted is always greatest when the cells are actively growing and decreases thereafter. In contrast to confluent 3T3 cultures, dense cultures of SV40-virus transformed 3T3 cells continued to secrete relatively large amounts of plasminogen activator. The ability to decrease secretion of plasminogen activator as cells become dense may be an important characteristic of cells which demonstrate density-dependent inhibition of cell multiplication in vitro.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources