Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Apr 29;2(5):842-852.
doi: 10.1021/acssusresmgt.5c00104. eCollection 2025 May 22.

Biochar Stability Revealed by FTIR and Machine Learning

Affiliations

Biochar Stability Revealed by FTIR and Machine Learning

Monica A McCall et al. ACS Sustain Resour Manag. .

Abstract

Biochar is a carbon-rich and environmentally recalcitrant material, with strong potential for climate change mitigation. There is a need for rapid and accessible estimations of biochar stability, the resistance to biotic and abiotic degradation in soil. This study builds on previous work by integrating Fourier-transform infrared spectroscopy (FTIR) data with predictive modeling to estimate standard stability indicators: H:C and O:C molar ratios. Lignocellulosic feedstocks were pyrolyzed at highest treatment temperatures (HTT) ranging from 150-700 °C, and all samples achieved H:C < 0.7 and O:C < 0.4 at HTT of 400 °C and above. Several statistical and machine learning models were developed using FTIR spectra. The random forest (RF) models, which incorporated full data preprocessing, yielded the highest accuracy (R 2 = 0.96 for both ratios) when tested on an unseen feedstock. Variable importance analysis identified spectral regions linked to aromaticity and inversely correlated to C-O stretches in cellulose and lignin as key predictors. The findings of this study verify that FTIR data can serve as a rapid and accurate tool for estimating biochar stability.

Keywords: H:C; O:C; Random Forest; grass; infrared spectroscopy; modeling; molar ratios; wood.

PubMed Disclaimer

Figures

1
1
Van Krevelen diagram of both H:C and O:C molar ratios of biomass and biochars produced from the various feedstocks over a range of pyrolysis HTT. The black rectangle represents the ratios determined by EBC and IBI to certify biochar as suitable for soil amendment. ,
2
2
ATR-FTIR spectra of all biochars and starting materials; each spectrum is an average of triplicates for illustrative simplicity and is displayed on a common, offset y-axis. HTT is denoted by color, and common peak assignments are noted above their respective peaks.
3
3
Model comparisons of R 2 and RMSE for both predicted H:C and O:C ratios on training data. The dot signifies the mean of the cross-validated resamples, and the error bars display the standard deviation. Preprocessing steps are abbreviated to N (normalized), S (scaled), NS (normalized and scaled), and NSP (normalized, scaled, and PCA).
4
4
Model predictions of H:C and O:C molar ratios vs actual values on unseen test data, which comprises a new feedstock (BS) and temperature treatments. Preprocessing steps are abbreviated to N (normalized), S (scaled), NS (normalized and scaled), and NSP (normalized, scaled, and PCA).
5
5
Exploration of PCA used in the preprocessing steps of model training. A) Scree plot showing variance explained of each individual PC, B) Cumulative variance of the principal components, C) Loadings of each wavenumber in the fingerprint region in the first 4 PCs, D) Variable importance of each PC for both the H:C and O:C model predictions as measured by increase in node purity, arranged in order of descending importance.

References

    1. Calvin, K. ; Dasgupta, D. ; Krinner, G. ; Mukherji, A. ; Thorne, P. W. ; Trisos, C. ; Romero, J. ; Aldunce, P. ; Barrett, K. ; Blanco, G. ; Cheung, W. W. L. ; Connors, S. ; Denton, F. ; Diongue-Niang, A. ; Dodman, D. ; Garschagen, M. ; Geden, O. ; Hayward, B. ; Jones, C. ; Jotzo, F. ; Krug, T. ; Lasco, R. ; Lee, Y.-Y. ; Masson-Delmotte, V. ; Meinshausen, M. ; Mintenbeck, K. ; Mokssit, A. ; Otto, F. E. L. ; Pathak, M. ; Pirani, A. ; Poloczanska, E. ; Pörtner, H.-O. ; Revi, A. ; Roberts, D. C. ; Roy, J. ; Ruane, A. C. ; Skea, J. ; Shukla, P. R. ; Slade, R. ; Slangen, A. ; Sokona, Y. ; Sörensson, A. A. ; Tignor, M. ; Van Vuuren, D. ; Wei, Y.-M. ; Winkler, H. ; Zhai, P. ; Zommers, Z. ; Hourcade, J.-C. ; Johnson, F. X. ; Pachauri, S. ; Simpson, N. P. ; Singh, C. ; Thomas, A. ; Totin, E. ; Arias, P. ; Bustamante, M. ; Elgizouli, I. ; Flato, G. ; Howden, M. ; Méndez-Vallejo, C. ; Pereira, J. J. ; Pichs-Madruga, R. ; Rose, S. K. ; Saheb, Y. ; Sánchez Rodríguez, R. ; Ürge-Vorsatz, D. ; Xiao, C. ; Yassaa, N. ; Alegría, A. ; Armour, K. ; Bednar-Friedl, B. ; Blok, K. ; Cissé, G. ; Dentener, F. ; Eriksen, S. ; Fischer, E. ; Garner, G. ; Guivarch, C. ; Haasnoot, M. ; Hansen, G. ; Hauser, M. ; Hawkins, E. ; Hermans, T. ; Kopp, R. ; Leprince-Ringuet, N. ; Lewis, J. ; Ley, D. ; Ludden, C. ; Niamir, L. ; Nicholls, Z. ; Some, S. ; Szopa, S. ; Trewin, B. ; Van Der Wijst, K.-I. ; Winter, G. ; Witting, M. ; Birt, A. ; Ha, M. ; Romero, J. ; Kim, J. ; Haites, E. F. ; Jung, Y. ; Stavins, R. ; Birt, A. ; Ha, M. ; Orendain, D. J. A. ; Ignon, L. ; Park, S. ; Park, Y. ; Reisinger, A. ; Cammaramo, D. ; Fischlin, A. ; Fuglestvedt, J. S. ; Hansen, G. ; Ludden, C. ; Masson-Delmotte, V. ; Matthews, J. B. R. ; Mintenbeck, K. ; Pirani, A. ; Poloczanska, E. ; Leprince-Ringuet, N. ; Péan, C. . IPCC, 2023: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, Lee, H. , Romero, J. , (Eds.)]. IPCC, Intergovernmental Panel on Climate Change (IPCC); First, Geneva, Switzerland, 2023.10.59327/IPCC/AR6-9789291691647. - DOI
    1. Biochar for Environmental Management: Science and Technology; Lehmann, J. , Joseph, S. , Eds.; Earthscan: London ; Sterling, VA, 2009.
    1. Kurniawan T. A., Othman M. H. D., Liang X., Goh H. H., Gikas P., Chong K.-K., Chew K. W.. Challenges and Opportunities for Biochar to Promote Circular Economy and Carbon Neutrality. Journal of Environmental Management. 2023;332:117429. doi: 10.1016/j.jenvman.2023.117429. - DOI - PubMed
    1. Joseph S., Cowie A. L., Van Zwieten L., Bolan N., Budai A., Buss W., Cayuela M. L., Graber E. R., Ippolito J. A., Kuzyakov Y., Luo Y., Ok Y. S., Palansooriya K. N., Shepherd J., Stephens S., Weng Z. H., Lehmann J.. How Biochar Works, and When It Doesn’t: A Review of Mechanisms Controlling Soil and Plant Responses to Biochar. GCB Bioenergy. 2021;13(11):1731–1764. doi: 10.1111/gcbb.12885. - DOI
    1. Bakshi, K. ; Bakshi, K. . Considerations for Artificial Intelligence and Machine Learning: Approaches and Use Cases. In 2018 IEEE Aerospace Conference; IEEE: Big Sky, MT, 2018; pp 1–9.10.1109/AERO.2018.8396488. - DOI

LinkOut - more resources