Biochar Stability Revealed by FTIR and Machine Learning
- PMID: 40432732
- PMCID: PMC12105012
- DOI: 10.1021/acssusresmgt.5c00104
Biochar Stability Revealed by FTIR and Machine Learning
Abstract
Biochar is a carbon-rich and environmentally recalcitrant material, with strong potential for climate change mitigation. There is a need for rapid and accessible estimations of biochar stability, the resistance to biotic and abiotic degradation in soil. This study builds on previous work by integrating Fourier-transform infrared spectroscopy (FTIR) data with predictive modeling to estimate standard stability indicators: H:C and O:C molar ratios. Lignocellulosic feedstocks were pyrolyzed at highest treatment temperatures (HTT) ranging from 150-700 °C, and all samples achieved H:C < 0.7 and O:C < 0.4 at HTT of 400 °C and above. Several statistical and machine learning models were developed using FTIR spectra. The random forest (RF) models, which incorporated full data preprocessing, yielded the highest accuracy (R 2 = 0.96 for both ratios) when tested on an unseen feedstock. Variable importance analysis identified spectral regions linked to aromaticity and inversely correlated to C-O stretches in cellulose and lignin as key predictors. The findings of this study verify that FTIR data can serve as a rapid and accurate tool for estimating biochar stability.
Keywords: H:C; O:C; Random Forest; grass; infrared spectroscopy; modeling; molar ratios; wood.
© 2025 The Authors. Published by American Chemical Society.
Figures





References
-
- Calvin, K. ; Dasgupta, D. ; Krinner, G. ; Mukherji, A. ; Thorne, P. W. ; Trisos, C. ; Romero, J. ; Aldunce, P. ; Barrett, K. ; Blanco, G. ; Cheung, W. W. L. ; Connors, S. ; Denton, F. ; Diongue-Niang, A. ; Dodman, D. ; Garschagen, M. ; Geden, O. ; Hayward, B. ; Jones, C. ; Jotzo, F. ; Krug, T. ; Lasco, R. ; Lee, Y.-Y. ; Masson-Delmotte, V. ; Meinshausen, M. ; Mintenbeck, K. ; Mokssit, A. ; Otto, F. E. L. ; Pathak, M. ; Pirani, A. ; Poloczanska, E. ; Pörtner, H.-O. ; Revi, A. ; Roberts, D. C. ; Roy, J. ; Ruane, A. C. ; Skea, J. ; Shukla, P. R. ; Slade, R. ; Slangen, A. ; Sokona, Y. ; Sörensson, A. A. ; Tignor, M. ; Van Vuuren, D. ; Wei, Y.-M. ; Winkler, H. ; Zhai, P. ; Zommers, Z. ; Hourcade, J.-C. ; Johnson, F. X. ; Pachauri, S. ; Simpson, N. P. ; Singh, C. ; Thomas, A. ; Totin, E. ; Arias, P. ; Bustamante, M. ; Elgizouli, I. ; Flato, G. ; Howden, M. ; Méndez-Vallejo, C. ; Pereira, J. J. ; Pichs-Madruga, R. ; Rose, S. K. ; Saheb, Y. ; Sánchez Rodríguez, R. ; Ürge-Vorsatz, D. ; Xiao, C. ; Yassaa, N. ; Alegría, A. ; Armour, K. ; Bednar-Friedl, B. ; Blok, K. ; Cissé, G. ; Dentener, F. ; Eriksen, S. ; Fischer, E. ; Garner, G. ; Guivarch, C. ; Haasnoot, M. ; Hansen, G. ; Hauser, M. ; Hawkins, E. ; Hermans, T. ; Kopp, R. ; Leprince-Ringuet, N. ; Lewis, J. ; Ley, D. ; Ludden, C. ; Niamir, L. ; Nicholls, Z. ; Some, S. ; Szopa, S. ; Trewin, B. ; Van Der Wijst, K.-I. ; Winter, G. ; Witting, M. ; Birt, A. ; Ha, M. ; Romero, J. ; Kim, J. ; Haites, E. F. ; Jung, Y. ; Stavins, R. ; Birt, A. ; Ha, M. ; Orendain, D. J. A. ; Ignon, L. ; Park, S. ; Park, Y. ; Reisinger, A. ; Cammaramo, D. ; Fischlin, A. ; Fuglestvedt, J. S. ; Hansen, G. ; Ludden, C. ; Masson-Delmotte, V. ; Matthews, J. B. R. ; Mintenbeck, K. ; Pirani, A. ; Poloczanska, E. ; Leprince-Ringuet, N. ; Péan, C. . IPCC, 2023: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, Lee, H. , Romero, J. , (Eds.)]. IPCC, Intergovernmental Panel on Climate Change (IPCC); First, Geneva, Switzerland, 2023.10.59327/IPCC/AR6-9789291691647. - DOI
-
- Biochar for Environmental Management: Science and Technology; Lehmann, J. , Joseph, S. , Eds.; Earthscan: London ; Sterling, VA, 2009.
-
- Joseph S., Cowie A. L., Van Zwieten L., Bolan N., Budai A., Buss W., Cayuela M. L., Graber E. R., Ippolito J. A., Kuzyakov Y., Luo Y., Ok Y. S., Palansooriya K. N., Shepherd J., Stephens S., Weng Z. H., Lehmann J.. How Biochar Works, and When It Doesn’t: A Review of Mechanisms Controlling Soil and Plant Responses to Biochar. GCB Bioenergy. 2021;13(11):1731–1764. doi: 10.1111/gcbb.12885. - DOI
-
- Bakshi, K. ; Bakshi, K. . Considerations for Artificial Intelligence and Machine Learning: Approaches and Use Cases. In 2018 IEEE Aerospace Conference; IEEE: Big Sky, MT, 2018; pp 1–9.10.1109/AERO.2018.8396488. - DOI
LinkOut - more resources
Full Text Sources