Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1985 Oct;43(2):220-32.
doi: 10.1016/0014-4800(85)90042-5.

X-ray microanalysis of mineralized matrix vesicles of experimental saccular aneurysms

X-ray microanalysis of mineralized matrix vesicles of experimental saccular aneurysms

N S Greenhill et al. Exp Mol Pathol. 1985 Oct.

Abstract

An energy dispersive X-ray microanalytical study was designed to examine the mineral deposits in matrix vesicles found in the walls of experimental aneurysms from two rabbits (103 and 1071 days postoperatively) and two sheep aneurysms (234 and 1202 days postoperatively). The freeze-substitution technique was adopted for use to retain inorganic ions in situ. Numerous, various sized extracellular electron-dense structures, believed to be matrix vesicles were observed. Size histograms for the mineralized vesicles showed that the proportion of smaller vesicles was higher in the older animals. A total of 370 vesicles were analyzed. Calcium and phosphorus with small amounts of magnesium were identified. No particular calcium phosphate mineral was dominant with the mean Ca/P molar ratio for all animals falling in the 1.1-1.2 range. Correlation coefficients for interrelationships between calcium, phosphorus, magnesium, and size were weak except for calcium vs phosphorus which was close to one, consistent with some type of calcium phosphate being the major constituent of the mineralized vesicles. Smaller electron-dense particles, probably mitochondrial granules were seen in some smooth muscle cells; a small number were analyzed and contained calcium and phosphorus (mean Ca/P molar ratio of 0.86) but no magnesium.

PubMed Disclaimer

Publication types

LinkOut - more resources