Plasmonic DNA-Barcoded Virion Nano-Oscillators for Multiplexed Quantification of Small-Molecule Binding Kinetics to Membrane Proteins
- PMID: 40436818
- PMCID: PMC12283228
- DOI: 10.1002/anie.202506464
Plasmonic DNA-Barcoded Virion Nano-Oscillators for Multiplexed Quantification of Small-Molecule Binding Kinetics to Membrane Proteins
Abstract
A high-density nano-oscillator platform using self-assembled DNA-barcoded virion sensors is developed to address the critical need for high-throughput label-free measurement of small-molecule binding to membrane proteins. By integrating virion display technology with charge-sensitive plasmonic detection, our platform enables robust, label-free quantification of small-molecule binding kinetics to membrane proteins. Gold nanoparticle-virion conjugates are self-assembled onto a plasmonic sensor chip via a flexible molecular linker to form high-density nano-oscillators. Driven by an alternating electric field, the oscillation amplitudes of the nano-oscillators are precisely measured via widefield plasmonic imaging. This charge-sensitive mechanism can sensitively detect the binding of small-molecule ligands to the membrane proteins displayed on the virions at single-nanosensor resolution, overcoming the sensitivity limit of conventional mass-sensitive techniques. More importantly, the platform employs novel affinity-discriminated DNA barcodes for multistate decoding with exponential multiplexing capacity, enabling high-throughput screening of a library of membrane proteins. For a proof-of-concept demonstration, binding kinetics of five pairs of G-protein-coupled receptors and their corresponding small molecule ligands are measured on a single sensor chip, with all individual nano-oscillators identified by just two affinity-discriminated, quadra-state DNA decoders. This technology advances membrane protein research and drug screening capabilities, offering a practical solution for biomolecular interaction studies and biosensing applications.
Keywords: Affinity barcoding; Multiplexed measurement; Plasmonic imaging; Small molecule binding kinetics; Virion displayed GPCRs.
© 2025 Wiley‐VCH GmbH.
Conflict of interest statement
Conflicts of interest
A US provisional patent application (63/649.551) has been filed by Skysong Innovations, LLC on behalf of Arizona State University based on an early draft of this article. Inventors are S. W. and S. C.
Similar articles
-
An approach to produce thousands of single-chain antibody variants on a SPR biosensor chip for measuring target binding kinetics and for deep characterization of antibody paratopes.bioRxiv [Preprint]. 2025 Apr 25:2025.01.11.632576. doi: 10.1101/2025.01.11.632576. bioRxiv. 2025. PMID: 39868233 Free PMC article. Preprint.
-
Aerolysin Nanopore Electrochemistry.Acc Chem Res. 2025 Feb 18;58(4):517-528. doi: 10.1021/acs.accounts.4c00630. Epub 2025 Jan 28. Acc Chem Res. 2025. PMID: 39874057 Review.
-
Large-Area Nanogap Platforms for Surface-Enhanced Raman Spectroscopy Toward Sensing Applications: Comparison Between Ag and Au.Biosensors (Basel). 2025 Jun 9;15(6):369. doi: 10.3390/bios15060369. Biosensors (Basel). 2025. PMID: 40558451 Free PMC article.
-
Measuring Ligand Binding Kinetics to Membrane Proteins Using Virion Nano-oscillators.J Am Chem Soc. 2018 Sep 12;140(36):11495-11501. doi: 10.1021/jacs.8b07461. Epub 2018 Aug 29. J Am Chem Soc. 2018. PMID: 30114365 Free PMC article.
-
[Research progress of peptide recognition-guided strategies for exosome isolation and enrichment].Se Pu. 2025 May;43(5):446-454. doi: 10.3724/SP.J.1123.2024.10015. Se Pu. 2025. PMID: 40331609 Free PMC article. Review. Chinese.
References
-
- Feng W, Ueda E, Levkin PA, Adv. Mater. 2018, 30, e1706111; - PubMed
- Li H, Fang W, Zhao Z, Li A, Li Z, Li M, Li Q, Feng X, Song Y, Angew. Chem. Int. Ed. 2020, 59, 10535–10539; - PubMed
- Pereiro I, Khartchenko A, Lovchik R, Kaigala G, Angew. Chem. Int. Ed. 2021, 133, 21103–21110;
- Cretich M, Damin F, Chiari M, Analyst 2014, 139, 528–542; - PubMed
- Aggarwal R, Lai L, Li H, Anal. Biochem. 2023, 683, 115369. - PubMed
-
- Cai H, Wolfenson H, Depoil D, Dustin M, Sheetz LMP, Wind SJ, ACS Nano 2016, 10, 4173–4183; - PMC - PubMed
- Zhang Z, Sun Y, Yang Y, Yang X, Wang H, Yun Y, Pan X, Lian Z, Kuzmin A, Ponkratova E, Mikhailova J, Xie Z, Chen X, Pan Q, Chen B, Xie H, Wu T, Chen S, Chi J, Liu F, Zuev D, Su M, Song Y, Adv. Mater. 2023, 35, 2211363; - PubMed
- Zhou X, Zheng B, Lab Chip 2023, 23, 1151. - PubMed
-
- Wu CC, Reinhoudt DN, Otto C, Subramaniam V, Velders AH, Small 2011, 7, 989–1002. - PubMed
-
- Chen S, Svedendahl M, Antosiewicz TJ, Kall M, ACS Nano 2013, 7, 8824–8832. - PubMed
-
- Wu CC, Reinhoudt DN, Otto C, Velders AH, Subramaniam V, ACS Nano 2010, 4, 1083–1091. - PubMed
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources