Differentiation and development of bundle sheath and mesophyll thylakoids in maize. Thylakoid polypeptide composition, phosphorylation, and organization of photosystem II
- PMID: 4044582
Differentiation and development of bundle sheath and mesophyll thylakoids in maize. Thylakoid polypeptide composition, phosphorylation, and organization of photosystem II
Abstract
Photosynthetic electron flow, polypeptide pattern, presence of chlorophyll-protein complexes, and phosphorylation of thylakoid polypeptides have been investigated in differentiated mesophyll (M) and bundle sheath (B) thylakoids of the C4 plant Zea mays. The polypeptide pattern of M thylakoids and their photosynthetic electron flow are comparable to those of other green plants. B thylakoids exhibit only photosystem I (PSI) activity, contain only traces of the PSII light harvesting (LHCII) polypeptide, do not bind [3H] diuron, and lack polypeptides of the water-oxidation complex of PSII and the herbicide binding 32-kDa polypeptide, as detected by specific antibodies. However, B thylakoids possess a partially active PSII reaction center, as demonstrated by light-dependent reduction of silicomolybdate with 1,5-diphenylcarbazide (DPC) as an electron donor, and the presence of the PSII reaction center polypeptides of 44-47 kDa. Only one chlorophyll a-protein complex, corresponding to the PSI reaction center-core antenna, was detectable in B thylakoids, as opposed to chlorophyll a and chlorophyll a,b-protein complexes present in M thylakoids. The light-dependent, membrane-bound kinase activity present in M thylakoids could not be detected in B thylakoids which, nevertheless, contain a protein kinase able to phosphorylate casein. A total of 19 differences between the electrophoretic pattern of B and M thylakoid polypeptides were observed. The mRNA coding for the LHCII polypeptide is primarily, if not exclusively, localized in M cells. The development of PSII complex precedes that of PSI during the differentiation of B and M chloroplasts in expanding leaves of light-grown plants and during the greening of dark-grown etiolated seedlings. The differentiation of the maize leaf into cells programmed to form B or M chloroplasts does not require light. In light-grown plants, the differentiation of B and M thylakoids occurred progressively from the base of the leaf and was completed at 4-5 cm from the leaf base.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Miscellaneous
